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Summary. What has since become known as the normal coupled cluster method 
(NCCM) was invented about thirty years ago to calculate ground-state energies 
of closed-shell atomic nuclei. Coupled duster (CC) techniques have since been 
developed to calculate excited states, energies of open-shell systems, density 
matrices and hence other properties, sum rules, and the sub-sum-rules that 
follow from imbedding linear response theory within the NCCM. Further 
extensions deal both with systems at nonzero temperature ar.:l with general 
dynamical behaviour. More recently, a new version of CC theory, the so-called 
extended coupled cluster method (ECCM) has been introduced. It has the 
potential to describe such global phenomena as phase transitions, spontaneous 
symmetry breaking, states of topological excitation, and nonequilibrium be- 
haviour. CC techniques are now widely recognized as providing one of the most 
universally applicable, most powerful, and most accurate of all microscopic ab 
initio methods in quantum many-body theory. The number of successful applica- 
tions within physics is now impressively large. In most such cases the numerical 
results are either the best or among the best available. A typical case is the 
electron gas, where the CC results for the correlation energy agree over the entire 
metallic density range to within less than 1 millihartree (or < 1%) with the 
essentially exact Green's function Monte Carlo results. The role of CC theory 
within modern quantum many-body theory is first surveyed, by a comparison 
with other techniques. Its full range of applications in physics is then reviewed. 
These include problems in nuclear physics, both for finite nuclei and infinite 
nuclear matter; the electron gas; various integrable and nonintegrable models; 
various relativistic quantum field theories; and quantum spin chain and lattice 
models. Particular applications of the ECCM include the quantum hydrodynam- 
ics o f  a zero-temperature, strongly-interacting condensed Bose fluid; a charged 
impurity in a polarizable medium (e.g., positron annihilation in metals); and 
various anharmonic oscillator and spin systems. 
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1. Introduction 

Coupled cluster theory is nowadays widely recognized by the quantum chemistry 
community as being one of the most powerful and most accurate microscopic 
formulations of the quantum many-electron problem that underpins their dis- 
cipline at the fundamental level. Precise descriptions of atoms and molecules 
require a very accurate incorporation of the most important effects of the 
electronic correlations, many of which are often subtly intertwined with each 
other at the quantitative level necessary before ab initio microscopic methods can 
attain their ultimate aim of being predictive. As an overall benchmark goal in 
this regard, quantum chemists aim to calculate correlation energies, for example, 
to an accuracy of one millihartree (1 mH). 

As several other articles in this issue attest, and as various other recent 
reviews and collections of articles (see, e.g., Refs. [1, 2]) detail at some length, the 
coupled cluster method (CCM) is now at both the formal and computational 
stages of development where these goals are being met for ever more complex 
polyatomic molecules, and for a wide range of properties and phenomena of 
chemical interest. The CCM is therefore increasingly becoming the method of 
first choice for a variety of problems connected with molecular structure and 
molecular spectra. Examples include the calculation of ionization potentials, 
electron affinities, ground-state expectation values of operators other than the 
Hamiltonian, excitation energies, and energy gradients (for use, for example, in 
searching potential energy surfaces to predict vibrational spectra and to locate 
transition states in decomposition reactions). 

Although the CCM was invented over thirty years ago by Coester and 
Kiimmel [3, 4], it was not until nearly ten years later that it was introduced 
into quantum chemistry by Ci~ek [5]. It was then less than twenty years ago 
that the first ab initio comparison was made between the corresponding coupled 
cluster (CC) and configuration-interaction (CI) wavefunctions of a specific 
molecular system, namely the BH 3 molecule using a simple minimal basis set 
[6]. It is interesting now to recall that this particular model was chosen since it 
was known that triexcited clusters made a large contribution to the energy. In 
fact, these authors demonstrated that the most important such contributions 
also came from the real (connected) triple excitations which could not be 
decomposed into (disconnected) single or double excitation components. The 
development of the computational technology that has now recently allowed an 
accurate evaluation of these triple excitations, still had to wait another fifteen 
years [7, 8]. 

The simplest implementation of the CCM in quantum chemistry is the 
coupled cluster doubles (CCD) approximation which includes all biexcited 
clusters with respect to some antisymmetric Slater determinant(single-reference) 
state. The explicit CCD equations were first written down by Cizek [5]. General 
purpose suites of ab initio CCD programmes for molecules were developed by 
two groups [9, 10] in 1978, and became widely available thereafter. Only in the 
case when the reference state is an antisymmetrized product of so-called maxi- 
mum overlap orbitals do the monoexcited clusters identically vanish. Otherwise 
their incorporation along with the biexcited clusters is achieved by the so-called 
coupled cluster singles and doubles (CCSD) approximation, the first implemen- 
tation of which was reported in 1982 [11]. As we have already seen, Noga and 
Bartlett [7] have only recently reported the first full  coupled cluster singles, 
doubles and triples (CCSDT) results. By comparing with the corresponding full 
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CI results they have now demonstrated that this method is the most accurate 
(single-reference) method currently available in quantum chemistry. 

Furthermore, it is nowadays widely accepted that any further increases in 
accuracy within quantum chemistry are also likely to arise from advances within 
the CCM itself. As we have seen, accurate and efficient computational implemen- 
tations of the CCM for atoms and molecules have been available for only about 
the last ten years. (By comparison, the CI method has been an effective 
computational tool for over twice that period, although even here its essential 
multireference and unitary group extensions have only existed for about ten 
years.) Finally, the extensions from the original CC single-reference approach for 
ground-state energies to deal, inter alia, with energy gradients, excited states, and 
multireference methods are all areas of intense current development in quantum 
chemistry, as other articles in this volume will attest, and to which the interested 
reader may turn for further references to the quantum chemistry literature. 

From the above description it should be apparent that CC technology is likely 
to continue to play an important role in ab initio computational quantum 
chemistry. Hence it seems particularly appropriate to remind ourselves that the 
CCM has by now also received very wide attention outside chemistry. In view of 
the many parallel developments and applications of the method that have been 
made in physics, for both finite and extended systems, which may therefore also 
lend themselves for use in chemical applications, it seems expecially apposite to 
review these other developments. Indeed, while quantum chemists are undoubt- 
edly the biggest users of the CCM techniques, and while they have been 
responsible for several essential theoretical contributions and most of the powerful 
computational advances which have turned the formalism into the viable tool it 
now is, it is also true that much of the progress and many of the formal 
developments of the CCM have been made elsewhere. 

The intention of the present article is therefore to review in very broad outline 
the large panoply of formal developments that have taken place under the umbrella 
title of CC theory, and to survey the associated spectrum of applications that have 
been made within the purview of physics, as opposed to chemistry. Other articles 
in the present volume and other recent reviews (see, e.g., Refs. [2, 12]) undertake 
the same aim from within chemistry, and so I will not discuss further any application 
to atoms, molecules, and other closely related models or areas of interest. Even 
so, the field of CC theory and its applications has by now grown so large that 
it is not possible to attempt a complete survey in an article of this size. It must 
therefore be clearly stressed from the outset that this review is intended to be 
indicative and illustrative rather than exhaustive. In many ways it may be viewed 
as a more detailed companion and follow-up article to an earlier introductory article 
on the same theme by the present author and one of the co-inventors of the CCM 
[13]. In that article we set the stage on which the present review is based. 

The remainder of the present paper is organized as follows. The particular 
niche that the CCM currently occupies within modern quantum many-body 
theory is first outlined in Sect. 2. In order to appreciate its central significance we 
briefly review there the main other microscopic general-purpose tools that are 
available to the many-body theorist, so that comparisons can be made. In Sect. 
3 we then attempt to provide an overview of all of the main formal strands that 
when woven together have become what is nowadays referred to collectively as 
CC theory or the CCM. 

It is thereafter convenient to discuss the specific applications of the CCM 
within physics according to various broad areas of specialization. Although there 
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is clearly no unique way of making these subdivisions, we find it useful to discuss 
in turn, in Sects. 4-8  respectively, the main applications that have been made to 
nuclear physics; the one-component Coulomb plasmas (e.g., the electron gas or 
"jellium") of special interest within (metallic) solid-state physics; various model 
many-body problems of interest within mathematical physics; quantum field 
theory; and quantum spin chain and lattice models. Various other more formal 
applications of CC techniques to such problems as the quantum fluid mechanics 
of a strongly interacting (zero-temperature) condensed Bose fluid, and a charged 
impurity in a polarizable medium (of relevance, for example, to the important 
experimental tool of positron annihilation in metals and other forms of con- 
densed matter), are also briefly sketched in Sect. 9. Finally, we conclude in Sect. 
10 with some remarks concerning possible future directions. 

2. Role of the CCM in modern quantum many-body theory 

Many-body physics or quantum many-body theory is not the rather specialized 
subfield of physics that it is sometimes believed to be. On the contrary, at least 
at the most fundamental or microscopic level in each of the energy ranges which 
are traditionally used to delimit and characterize particular branches of physics, 
we are nearly always faced with many-particle situations. Thus, it is clear that in 
fields like molecular, solid-state, and nuclear physics most of the fundamental 
objects of discourse are interacting many-body systems. But even in elementary 
particle physics one is usually dealing with more than one particle. For example, 
at some level of reality a nucleon is made up of three quarks interacting via 
gluons and surrounded by a cloud of mesons, which are themselves composed of 
quark-antiquark pairs. Even more fundamentally, even the "physical vacuum" of 
any quantum field theory is endowed with an enormously complex infinite 
many-body structure due to the virtual excitation of particles. 

Thus, it is quite clear that although techniques to deal with interacting 
many-body systems are likely to have separately arisen from specific physical 
contexts, they may also be of more general interest. The CCM and its birth 
within nuclear physics is only one example. Nevertheless, if we limit ourselves to 
comparisons with other fundamental and "universal" tools, the number of 
competing methods is surprisingly small. Before we enumerate them, however, 
we emphasize that there exist also many other macroscopic or phenomenological 
or approximate or empirical descriptions and techniques, which have proven 
successful in one or other context. Some of these have also been essential for the 
later development of more fundamental techniques. They are, on the other hand, 
excluded from our present considerations because, by their very nature, they are 
"specialist" tools which are tailor-made for a particular system or application, 
and because our emphasis here is on techniques that have a more universal 
appeal. 

Clearly those methods which are intrinsically exact and which therefore lend 
themselves to systematic sequences of approximations, have a particular intellec- 
tual appeal. Indeed one could justifiably argue that this feature is both a 
prerequisite and a hallmark of any truly microscopic ab initio formulation of the 
general many-body problem. Occupying a special place between theory and 
experiment are several Monte Carlo methods (e.g., the Green's function, diffu- 
sion, and path-integral varieties) that solve the N-body Schr6dinger equation 
directly by stochastic simulation, typically for N ~< 300 (and see, e.g., Refs. 
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[ 14-17]). In those cases and for those properties where they can be applied, these 
methods provide a set of unique benchmarks against which other ab initio 
calculations may be measured, since these results may be considered to be exact 
to within well-defined statistical errors (together with an extrapolation error 
associated with taking the bulk limit, N ~ oo, for extensive systems). 

The remaining microscopic techniques fall into the six main classes: (i) 
time-independent perturbation theory (TIPT); (ii) Green's function (GF) or 
propagator methods; (iii) variational methods; (iv) the correlated basis function 
(CBF) method; (v) the configuration-interaction (CI) and other closely related 
"generalized shell-model" methods; and (vi) the coupled cluster method (CCM). 
The first two of these methods are perturbative in origin. The TIPT technique 
initially provides an expansion in powers of some relevant coupling constant 
associated with the interaction term in the Hamiltonian. Individual terms in the 
resulting series may be considered graphically in terms of the usual Goldstone 
diagrams. Various infinite partial resummations are often performed out of 
necessity, either because the series diverges badly or is otherwise ill-defined from 
the outset. Well-known examples include the ladder-diagram summation (for 
hard-core or other strongly-repulsive short-range potentials) which leads to the 
Bethe-Brueckner-Goldstone G-matrix expansion or the hole-line expansion 
(and see, e.g., Refs [18-20]); and the bubble- or ring-diagram summation of the 
random phase approximation (RPA) [21, 22] (for long-range potentials of the 
Coulomb type). 

Even in such rearranged or partially resummed examples, one is still ulti- 
mately forced in practice to neglect all terms that are presumed to be unimpor- 
tant or that cannot easily be handled. Furthermore, it is usually difficult in 
realistic applications to justify the retention of certain terms at the expense of 
neglecting others. The history of microscopic nuclear theory, for example, is 
littered with incorrect or misleading calculations which amply illustrate the 
danger of the blind inclusion of extra diagrams, as has been pointed out many 
times by Kiimmel and his coworkers [23, 24]. In quantum chemistry, the TIPT 
techniques provide the usual means of doing many-body perturbation theory 
(MBPT) or what in chemistry has increasingly become known as Moller-Plesset 
perturbation theory. In chemical applications it is usual in MBPT to include all 
terms through some given finite order in the electron interactions. Full fourth- 
order, MBPT(4), calculations are now commonplace [25]. 

By comparison with TIPT methods, GF techniques are rooted in time-depen- 
dent perturbation theory, and hence rely again on expansions in powers of the 
coupling constant. They may also be formulated as time-dependent equations for 
matrix elements which describe the propagation of groups of particles within the 
many-body system. These (multi-particle) Green's functions or propagators, and 
their perturbative expansions, find a diagrammatic representation in terms of 
Feynman diagrams. Although both time-dependent and time-independent ver- 
sions of perturbation theory lead formally to identical (exact) results, at given 
respective levels of truncation they will certainly differ from each other. 

Such propagator methods have been and still are widely used in quantum 
chemistry (and see, e.g., Refs. [26, 27]), particularly for molecular spectroscopic 
properties. Nevertheless, on the wider front they suffer from many of the same 
drawbacks as the TIPT techniques discussed above. Thus, with one possible 
caveat, neither TIPT nor GF methods are nowadays generally considered within 
quantum many-body theory to be sufficiently accurate or sufficiently versatile to 
be candidates for the position of a universal, high-precision method. The only 
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real exception to this viewpoint is provided by the so-called parquet diagram, or 
planar theory, approach within the broader GF scheme. 

The ideas behind parquet theory were introduced [28] at around the same 
time that Coester first introduced the CCM. The specific context and impetus for 
their introduction was certain problems in particle physics. Similar equations 
were later used to study X-ray absorption and emission in metals [29]. However, 
it was not until 1979 that the potential of parquet theory for the study of 
strongly interacting condensed Bose systems was noted by Ripka [30]. He 
particularly called attention to the fact that the hypernetted chain (HNC) 
equations of the Jastrow variational approach, which we discuss in more detail 
below and which was at that time meeting with considerable success in dealing 
with such extended bosonic systems as liquid 4He, shared severable very desirable 
features with the parquet equations. He remarked that just as the HNC equa- 
tions of variational theory treated simultaneously and consistently both the long- 
and short-range correlations, so too would the parquet equations in perturbation 
theory, if only they could be solved. 

This astute observation of Ripka provided the stimulus for the 1982 study of 
Jackson, Lande and Smith [31], which examined the parquet equations for 
bosons in great detail. They also showed how these otherwise rather formidable 
equations could be rendered tractable, and hence solved numerically, by the 
introduction of simple localizing approximations. 

The basic concepts of parquet theory are both simple and appealing. The 
method first focusses on the effective two-body interaction, which it then expresses 
in terms of a large and physically interesting class of Feynman diagrams. These 
so-called parquet diagrams are a particular self-consistent sum of ring, ladder, and 
vertex correction terms for the two-body Green's function. Most important 
physically is the fact that the two-body (i.e., particle-particle and hole-hole) ladder 
diagrams and the particle-hole ring diagrams are iterated together in a maximal 
fashion. (Indeed in this one important respect parquet theory has a conceptual and 
practical advantage over the CCM which in its lowest CCD approximation also 
includes among many others all ring and all ladder diagrams, together with some 
but not all of their joint iterates.) Although the full two-body parquet equations 
are highly complex, their correspondingly approximated local counterparts were 
applied to such model bosonic systems as liquid 4He using the Lennard-Jones 
potential, and neutron matter treated as a Bose system interacting via the Reid 
soft-core IS 0 interaction. Not surprisingly in view of Ripka's comments, good 
agreement was found with the corresponding optimized Jastrow HNC results. 

At the formal level it was later demonstrated [32] that a similar, but 
nonetheless distinct, local form of the full two-body parquet equations is 
identical to optimized Jastrow HNC theory. This result was particularly impor- 
tant since it provided a bridge between the otherwise very disjoint perturbative 
approaches of TIPT and GF theory on the one hand, and variational approaches 
on the other. Later formal developments have included a possible extension to 
fermionic systems [33, 34]; the inclusion of three-body terms [35]; and parquet 
perturbation theory [36] for bosons, as an expansion in the difference between 
the exact and approximate propagators, in order to improve systematically upon 
the local parquet equations. Interesting connections between parquet theory and 
Baym-Kadanoff theory [37] have also been made [38]. This latter approach is 
noteworthy in that it uses an initial approximation for the two-body vertex to 
construct from it a conserving vertex, namely one which conserves particle 
number, momentum, and energy. 
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Despite what is now a fairly large corpus of formal developments, the 
parquet method has not yet been widely applied and tested. Nevertheless, it 
clearly deserves to be, and it must be considered as a potential candidate for the 
position of a universal tool in quantum many-body theory. We have stressed it 
here for just these reasons. 

We turn next to the use of variational methods in quantum many-body 
theory. Perhaps the simplest of these approaches are based on a trial wavefunc- 
tion of the (Bijl-Dingle-) Jastrow type [39]. The early calculations of this sort 
relied on various cluster expansions of the ensuing approximate matrix elements 
[39-41]. Later on it was realized that the variational approaches may themselves 
be formulated diagrammatically [30, 42, 43]. This feature has been of consider- 
able help in constructing such powerful approximations as the Percus-Yevick 
and HNC summations (which have their origins in the classical theory of liquids) 
and their variants, both for bosons and fermions [30, 44-46]. Various articles 
and reviews concerning the use of variational methods in quantum many-body 
theory exist (and see, e.g., Refs. [30, 47-50]). The 1979 article by Clark [47] is 
particularly recommended as what is perhaps still the standard review of the 
variational theory of extended nuclear matter. Similar reviews (and see, e.g., Ref. 
[51]) also exist for applications to few-body systems. 

The variational approaches sketched above suffer from two fundamental 
flaws. In the first place the various partial summations of the graphs considered 
by such approximation schemes as HNC give methods which lose one of the 
most attractive features of variational formulations, namely that they yield 
estimates for the energy which are upper bounds to the exact ground-state 
energy. Secondly, even a complete summation of graphs (or a variational Monte 
Carlo evaluation of the corresponding expectation values) for a given trial 
wavefunction, say of the Jastrow type, gives only the exact variational result and 
not the true ground state. This second deficiency may be removed in principle by 
including more general state-dependent correlations and higher-order correlation 
functions of the Feenberg type [52]. Alternatively, and more generally, one may 
extend the Jastrow wavefunction to a complete set of correlated basis functions 
(CBF), 

The CBF method was introduced some thirty years ago by Feenberg and his 
collaborators [44, 53], and has since then been largely developed by Clark and 
his coworkers [54-60]. A very brief qualitative survey of the method has been 
given recently by the present author [61]. It also contains many more citations of 
the original CBF literature. The central ingredient of the CBF method is the 
direct incorporation of the most important interparticle correlations which are 
believed to characterize the system under consideration, into the approximate 
wavefunctions on which the microscopic description is based. At its simplest level 
the method considers only a single configuration and hence reduces to ordinary 
variational theory. As we have seen above, the latter further simplifies to Jastrow 
theory if the simplest reasonable choice of correlation operator is made in terms 
of a symmetric product over all pairs in the system of state-independent 
two-body correlation functions. 

At its most general level, the CBF method constructs for the N-body system 
a multiconfigurational correlated basis {[!//I>} of normalized but generally 
nonorthogonal state vectors: 

Fl~,> 
I > - -  iF+El 4, >1/2, (1) 
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in terms of a correlation operator F applied to a complete orthonormal basis 
{[~,>} of model states. The latter usually carry the correct quantum statistics 
and any essential symmetries of the system. They would hence provide an 
adequate lowest-order description of the system if it were not strongly interact- 
ing. For an application to molecules, for example, the states {1~,>} would 
probably be chosen as a set of Slater determinants of some appropriate single- 
electron orbitals. 

The correlation operator F is thus symmetric in the complete sets of 
single-particle quantum numbers used to denote the N particles. Most impor- 
tantly, F also possesses the cluster decomposition property, namely that upon 
separating one subgroup of particles (say 1 , 2 , . . . , n )  far from the rest 
(n + 1, n + 2 . . . . .  N) in real space, the operator F( 1, 2 , . . . ,  N) decomposes into 
a product: 

F( 1 , . . . ,  N) --+ F(")( 1 , . . . ,  n)F (N-'O(n + 1 . . . . .  N). (2) 

It is this property which allows the natural definition of correlation operators 
F(")( 1 . . . . .  n) for n-body subsystems with 1 ~< n ~< N, in terms of a given N-body 
operator F -  F (m. It is also the key ingredient in allowing the derivation of 
linked cluster expansions for physical quantities. 

The simplest choice for F is the state-independent Jastrow form, F--+Fj, 
specified in its usual coordinate-space form as: 

Fj = 1-I f(rij), (3) 
1 <~i<j<<.N 

where r U is the relative coordinate for particles i and j. The more general 
Feenberg form, F ~ FF, is given in terms of higher-order correlation functions 
a s :  

FF = 1-If2(ro) I~ f3(rij, rik, rjk) . . . .  (4) 
i < j  i < j < k  

Whatever choice for F is adopted, the CBF method devolves onto the computa- 
tion of the matrix elements HH and NIj of the Hamiltonian H and the unit 
operator, respectively: 

n , ,  -- <~, IF*HF[ ~ ,  >; N1, -- <~,WFI~J>.  (5) 

One assumes that any exact stationary energy eigenstate IS>, H[E> = E I E ) ,  
may now be (approximately) expanded in the multiconfigurational basis: 

I'~> = Z C,[ 7*j ). (6) 
J 

The Schr6dinger equation is then decomposed as usual into the coupled set of 
linear generalized eigenvalue equations: 

(HH -- ENIs)Cj =0,  (7) 
J 

which have a nontrivial solution for the coefficients {Cs } if and only if E satisfies 
the secular equation: 

det(Ht~ -- EN,  j) = 0. (8) 

Clearly, the accurate numerical evaluation of the matrix elements {His } and 
{NIj } is far from trivial. In this context various cluster-expansion techniques 
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have been developed [41, 62], which themselves also provided a basis for much of 
the later diagrammatic analysis of both diagonal elements (expectation values) 
[42-46] and off-diagonal elements [55]. This latter work further led to the 
definition of the CBF effective interaction, and to many illuminating connections 
with conventional diagrammatic MBPT. Exploration of these connections has 
allowed techniques from standard TIPT as developed for weakly-interacting 
systems to be taken over into their CBF counterparts for comparable application 
to strongly-interacting systems (and see, e.g., Ref. [59]). 

Finally, however the matrix elements {HI j} and {N~j} are derived, the 
remaining generalized eigenvalue problem of Eqs. (7) and (8) must then be 
attacked in a systematic, approximate, or heuristic manner. Various such meth- 
ods have been developed within the general CBF framework. These include 
nonorthogonal perturbation theory [54]; straightforward CI-type diagonalization 
in the space spanned by some subset of the full correlated basis [54, 63]; and a 
correlated version of the usual RPA [21], which now performs a semiclassical 
treatment of small-amplitude oscillations about an equilibrium correlated 
configuration [56, 57, 59, 60]. There have even been attempts to formulate a 
generalized version of coupled cluster theory in the CBF basis [64]. 

We turn then finally to the CI method [65] and the CCM. Both of these 
remaining microscopic many-body techniques are well known in quantum chem- 
istry, and the latter is our main concern here. For present overview purposes we 
merely remind the reader that the CI method is basically a straightforward 
diagonalization of the Hamiltonian in some multiconfigurational subspace of the 
full many-body Hilbert space. One of its main advantages is that it is also easily 
and equivalently formulated variationally, in a parametrization that preserves 
the manifest Hermitian adjoint relationship between corresponding bra and ket 
wavefunctions. In this way we see that each of the set of approximate energy 
eigenvalues so obtained provides an upper bound to the corresponding member 
of the similar set of exact lowest eigenvalues. Furthermore, by the well-known 
interlacing (or Hylleraas-Undheim) theorem [66], an increase in the size of the 
multiconfigurational CI subspace is guaranteed to lead to improved estimates, 
i.e., to ones which are lower (or, in the worst case, unchanged) in energy. 

This advantage of the CI method (which is not shared by the CCM) is, 
however, offset by the disadvantage that the method is not size-extensive [9]. In 
diagrammatic language, it contains terms which are not linked (connected). For 
extended systems this deficiency is fatal. In order to guarantee the size-extensivity 
of the energy of the many-body system, it is clearly necessary that the effective 
Hamiltonian is separable over the various possible subsystems which arise in the 
corresponding dissociation limits where they are asymptotically separated to 
large relative distances so that the interactions between them become vanishingly 
small. This will certainly be the case if the wave operator is similarly multiplica- 
tively separable. The importance of exactly maintaining the separability of the 
wavefunction at any subsequent level of approximation has been stressed by 
Primas [67], although its importance for energy calculations was perhaps first 
realized by Brueckner [68] when using nondegenerate Rayleigh-Schrrdinger 
MBPT to calculate the ground-state energy of infinite nuclear matter. An 
obvious method of ensuring that the wave operator is multiplicatively separable 
is to write it as the exponential of the so-called cluster operator, which in turn is 
additively separable and hence representable by a sum of connected diagrams. As 
is by now very well known, this is the central feature of the original CCM as 
described more fully in Sect. 3. 
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From our discussion to date it should be clear that the only existing fully 
microscopic formulations of quantum many-body theory which are capable of 
systematic improvement, and which are both widely applicable and capable of 
high precision (and hence of being "universal" tools), are the CBF method and 
the CCM. Parquet theory may also fall into this category but it has not yet been 
sufficiently widely tested to be able to judge. On the other hand, the CBF method 
has been widely applied to systems as diverse as finite nuclei [56, 60, 63]; nuclear 
matter [47, 69]; neutron stars [70]; liquid 4He [69]; unpolarized [69, 71] and 
polarized [59] liquid 3He; the electron gas [71]; various species of electron-spin- 
aligned bulk atomic deuterium [58]; the lattice Hubbard model of strongly 
interacting electrons [72]; and the U(1)3 lattice gauge model of quantum 
electrodynamics [73]. The CCM has been at least as widely and at least as 
successfully and accurately applied in both chemistry and physics. It is our 
intention in the remainder of this paper to survey the latter applications. 

Before doing so, we end the present overview of many-body techniques by 
noting that the fact that there exists only a small number of fundamental ab 
initio methods is not something to be regretted. It is widely believed by quantum 
many-body theorists that much more important nowadays than the development 
of further techniques is the exploration of the interconnections between existing 
methods. This is clearly a reflection on the power and universality of the 
available methods. In this vein we note that there have already been several 
important confrontations and proposed marriages between existing methods, 
and we conclude by mentioning some of them. 

In the first place, one of the earliest confrontations was provided by the 
so-called "crisis in nuclear matter theory" which occupied a central place in 
quantum many-body theory in the 1970s. Two fundamental issues were involved. 
Thus, there was a disagreement between the lowest-order Brueckner theory 
calculations of TIPT and various variational calculations, when both were 
performed with the same internucleon potential. Furthermore, neither method 
gave good saturation properties when the best available potentials were used. 
That crisis has now been essentially resolved (and see, e.g., Ref. [52]) to the 
mutual advantage of both methods. In particular, the later development of 
Brueckner theory that was necessary for the resolution has greatly added to our 
understanding of many-body theory and many-body systems. Another very 
beneficial outcome of this early confrontation was that the power of the 
variational and the CBF techniques was thereafter much more widely appreci- 
ated. Indeed, the subsequent emphasis placed on the complementary roles played 
by the variational and the perturbative approaches has also been of importance 
in many later developments. 

Secondly, and continuing in the same spirit, we have already noted the 
important formal role played by parquet theory [32] in demonstrating the exact 
equivalence between the optimized HNC approach to the variational Jastrow 
theory and a particular (approximate) local form of itself. Thirdly, the relation- 
ship of the CCM to TIPT as providing at given levels of truncation (e.g., 
CCD, CCSDT) very sophisticated and intricate resummations of various physi- 
cally important and infinite classes of Goldstone diagrams, is widely known. A 
fourth and perhaps less well-known result concerns the relationship of the CI 
method to the CCM. In particular, the CI method together with the two main 
modern complete formulations of the CCM which we describe later, and known 
respectively as the normal (NCCM) and extended (ECCM) versions [74], have 
been shown [75] to form a natural closed hierarchy of three increasingly 
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sophisticated parametrizations in which the underlying amplitudes have increasing 
degrees of connectedness. In the same spirit, each of the three methods has also 
been completely reformulated [74, 75] via a variational principle. 

Fifthly, and at the level of possible proposed marriages between the various 
methods, we have already mentioned the "correlated coupled cluster theory" [64] 
which was devised to combine the best features of both the CCM and CBF 
approaches. It is unfortunate that, to the best of our knowledge, this marriage has 
not yet been put to the test of a real application. More recently, two other such 
extensions of the CCM have been discussed. Thus, sixthly, in a recent series of 
papers [76, 77] the CCM has been the subject of intense investigation in order 
exactly to incorporate translational invariance into it, for use with such light finite 
systems as the alpha-particle. As a consequence, the emphasis has been to 
formulate the CCM and the underlying correlations directly in coordinate space 
rather than in the more usual multiconfigurational Fock-space representation. In 
this way contact has been made both with more traditional generalized nuclear 
shell-model calculations of the CI type, with the result that the number of 
configurations can be dramatically reduced [76], and also with variational 
approaches [77]. This latter work holds out real possibilities of combining the best 
elements of the CL, variational and CCM approaches. Finally, and as a seventh 
example, very recent work [78] has been connected with the incorporation of 
Jastrow-type correlations into the higher-order cluster terms that are otherwise 
neglected entirely in the standard (e.g., CCD, CCSDT) CCM truncation schemes. 

All of these various partial mergers hold considerable promise for the future. 
Indeed, it is clear that as both the CBF and CCM techniques in particular 
become increasingly sophisticated, the differences between them are becoming 
increasingly blurred. 

3. Overview of CC theory: the formalism 

The CCM, in its original single-reference formulation [3, 4], was invented as a 
means of parametrizing the ground ket state of a quantum many-fermion system 
at zero temperature (and thus in a pure state), and hence of evaluating its energy 
eigenvalue. It is important to realize, however, that the method has now developed 
far beyond this level. The range of individual components now contained under 
the general heading of CCM theory is demonstrated in Fig. 1, in which we have 
also made a very schematic attempt to indicate the hierarchical structure of the 
main elements. The reader should be aware that the schema shown is neither 
unique in its decomposition nor wholly rigorous in the imposition of a logical 
structure on the resulting components. Nevertheless, we believe that Fig. 1 is 
useful, at least as an aide memoire in surveying the formal aspects. 

Perhaps the most fundamental ingredient for any application of the CCM is 
the so-called model state ]~). Its choice is wide, but it must play the basic role 
of a cyclic vector, with respect to which we can define two Abelian (i.e., mutually 
commuting) subalgebras of multiconfigurational creation operators {C~} and 
their Hermitian-adjoint destruction operators {Ct}. Thus, the prime requirement 
is that arbitrary ket and bra states within the many-body Hilbert space may then 
be decomposed as the respective linear combinations: 

I I 
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Fig. 1. A schematic overview 
of the main ingredients of 
coupled cluster theory, and 
their hierarchical structure 

The set-index I clearly labels a general multiparticle cluster configuration, which 
in itself defined with respect to the model state 14~) in the role of a 'vacuum' or 
reference state. For the typical number-conserving Fermi system used in quan- 
tum chemistry, the standard choice for ]~)  is usually the single-particle shell- 
model (Slater determinant) state formed from an antisymmetrized product of 
suitably chosen single-particle orbitals. (For an extended translationally invari- 
ant system this state becomes the usual filled Fermi sea of plane-wave states.) 
The creation operators {C/*.} then describe configurations formed with respect to 
this single-reference, noninteracting, closed-shell state by the formation of multi- 
ple pairs of single fermions in (particle) orbitals unoccupied in [~)  and single 
vacancies in the corresponding (hole) orbitals occupied in 14~). 

Nevertheless, this is by no means the only choice. The superconducting 
Bardeen-Cooper-Schrieffer (BCS) state is an example of a number-nonconserv- 
ing choice. The accepted wisdom is for ]4~) to embody the underlying statistics 
and other symmetry properties of the system, or its particular phase under 
consideration, so far as is practicable. For extended number-nonconserving 
bosonic systems the zero-momentum condensate is a standard choice, whereas 
for field-theoretic systems one might well opt for the bare vacuum in number- 
nonconserving cases. 

Other examples also exist. For example, for such spin-algebraic systems as 
the Lipkin-Meshkov-Glick (LMG) model [79] which are defined with respect 
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to an irreducible SU(2) multiplet of fixed quantum number j, and hence spanned 
by the usual set of (2j + 1) states {I J, m); m = - j ,  - j  + 1 , . . .  ,j}, the state [~)  
may be chosen as [ 4 ) =  [j, - j ) .  In this case, the creation operators {Ct*} are 
simply the usual step-up ladder operators, (J+)", up to suitable multiplicative 
normalization constants. Similarly, for such spin-½ magnetic systems as the 
Heisenberg model defined on a bipartite lattice, I~)  may be chosen as the 
perfectly aligned state (in the ferromagnetic regime) or the N6el state (in the 
antiferromagnetic regime), for example. For further discussion of these very 
general algebraic foundations of the CCM the reader is referred to Ref. [80]. 

The exact ground-state ket wavefunction, I ~u >, is then written in terms of the 
model state [4 )  in the standard CCM form as: 

] 'P ) = eS] ~ >, (10) 

in terms of the cluster correlation operator S (which is more usually denoted as 
T in quantum chemistry applications). It may itself be decomposed wholly in 
terms of creation operators as: 

S = Z ' s z C ~ ,  (11) 
I 

where, by definition, the prime on the sum over configurations {I} excludes the 
I = 0 term corresponding to the identity operator, Co t = 1. We thus have the 
intermediate normalization condition ( 4 I ~ ) =  <4 ]45)= 1. The exact ground- 
state Schr6dinger equation: 

H I ku> = E[ ~u>, (12) 

is then rewritten in the similarity-transformed form: 

e-SHeS[4> = Elq~>, (13) 

which is the hallmark of the CCM. By taking the inner products of Eq. (13) with 
14> itself and with the complete set of states {Cztl4>; I¢0} we are thus led 
respectively to an equation for the ground-state energy eigenvalue E in terms of 
the cluster correlation coefficients {sl}, and a set of formally exact, microscopic, 
coupled nonlinear equations for these coefficients, in which there appear no 
macroscopic terms like the energy E. These latter equations are all of linked-clus- 
ter type, due to the nested commutator expansion: 

e -SHeS  = H + [H, S] + 1 [[H, S], S] + ' . "  (14) 
z..,. 

and the fact that all of the individual components of S commute with each other, 
so that each element of S in Eq. (11) is linked directly to the Hamiltonian. 
Furthermore, the otherwise infinite series of Eq. (14) also always terminates in 
this case after a finite number of terms, since each term in the second-quantized 
form of the Hamiltonian contains a finite number of destruction operators 
(defined with respect to 14)). 

The standard CCM description of excited states has been given, inter alia, by 
Emrich [81]. Strictly speaking, Eq. (10) describes not only the ground state of 
Eq. (12), but also any state with the same quantum numbers as the ground state 
and with nonzero overlap with the model state, <4 I~ u > ¢ 0. The possibility of 
obtaining multiple solutions to the nonlinear ground-state CCM equations has 
been discussed in some detail for a particular model case in Ref. [82]. For excited 
states (or more generally, for states with zero overlap with [4 >), we construct the 
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respective ket wavefunctions {[ 7~)} in the CCM in terms of a set of linear 
excitation operators {X ~} which act on the corresponding exact ground-state ket 
wavefunction 171): 

= = X eSl ), ( 1 5 )  

where X x is again decomposed wholly in terms of creation pieces with respect to 

= Z '  • (16) 
I 

Hence, the operators X ~ and S commute. The prime on the sum in Eq. (16) 
ensures that (~lT~z)= 0. For extended systems with more than one phase, for 
example, the so-called ground-state formulation of Eqs. (10)-(11) will generally 
yield only the lowest state of a given symmetry imposed implicitly by the 
particular choice o f ] ~ ) .  Indeed, phase transitions may often be detected within 
this CCM description by observing (for fixed I~)) the onset of "excited" states 
of negative excitation energy from Eqs. (15)- (16), as some parameter character- 
izing the system is varied beyond some critical value. This point is discussed 
more fully elsewhere [83]. 

The excited-state Schr6dinger equation: 

HI 7'~) = E~ 17J~) ~ (E + e~)] 7t~ ), (17) 

may now be combined with its ground-state counterpart to derive the CCM 
eigenvalue equation: 

e-S[H, X~le s] ~ )  = e~X~]~), (18) 

for the excitation energy e~ --- (E~ - E) directly. We may now simply write down 
a coupled set of homogeneous linear eigenvalue equations for the excited-state 
configuration coefficients {x~} of the linked-cluster operator X ~, by taking the 
inner products of Eq. (18) with each member of the complete set { C~ [ • ); I ~ 0}. 
We note that the left-hand side of Eq. (18) again has the form of a similarity 
transform, which may be expanded by analogy with Eq. (14). In this way we 
observe that the excited-state CCM equations may rather simply be derived from 
their ground-state counterparts by replacing each multinomial term in the 
coefficients {si } arising from the expansion of the left-hand side of Eq. (13), with 
a corresponding set of terms in which each single coefficient ss is replaced one at 
a time in turn by the corresponding factor x ~J, and where the zeroth-order 
(inhomogeneous) terms in {s~) are dropped. 

In order to implement the above CCM schemes for ground-state and 
excitation energies, it is necessary to truncate the corresponding sets of equa- 
tions. There are many ways of doing this, but the simplest is probably the 
SUB(n) scheme for the ground state, or the more general SUB(m, n) scheme for 
excited states also. In the latter case, all configurations {x~} and {s~} which 
describe dusters of more than m and n particles (or particle-hole pairs in the case 
of number-conserving Fermi systems) respectively are set to zero. The remaining 
equations, derived as described from Eqs. (13) and (18) by taking their respective 
inner products with the wavefunctions, C~14~), of the configurations retained, 
are then solved exactly (or as accurately as possible). Thus, for example, the 
SUB(3) approximation for the ground state is precisely what we earlier referred 
to as the CCSDT approximation. Any such ground-state approximation results 
in a set of parameters {sz } which may then be used as input to the excited-state 
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equations. It is clear that in the SUB(m, n) approximation the excitation energies 
{e~ } are equivalently obtained by diagonalization of the operator (e -SHeS  - E),  
where S is the SUB(n)-approximated CCM ground-state correlation operator, 
within some subspace of multiconfigurational states defined by the truncation 
index m. 

In general, there is no reason at all why the truncation indices m and n should 
not be chosen differently. This freedom allows a considerable degree of flexibility 
within the method. Further work in this connection [84] has shown that by further 
imbedding the theory of linear response within the C C M ,  each of the usual 
energy-weighted-moment sum rules for the dynamic (liquid) structure function 
may, in principle, be exactly decomposed into an infinite cluster-hierarchy of 
sub-sum-rules. One outcome of this development is a rather valuable bridge 
between the ground-state and excited-state CCM formalisms which, although 
clearly intimately related, are otherwise somewhat disjoint in terms of their 
separate truncation systematics. 

The above work [84] also gives a set of independent exact yardsticks for the 
linked-cluster amplitudes, against which approximation schemes in both ground 
and excited formalisms can be tested for mutual compatibility. Furthermore, it 
provides a mechanism whereby any additional knowledge of the system (obtained 
from either experiment or alternative theoretical formalisms) about either the 
excitation spectrum or the ground-state correlations, may be used to extract 
information within the CCM on the other. Finally in this context, it is interesting 
to note that by making the simple approximation that the lowest members of the 
CCM sub-sum-rules are saturated by a single (collective or "giant resonance") 
state, we regain the important Biji-Feynman relation [85] for the excitation 
spectrum in terms of the static structure function. We believe that this aspect of 
the CCM may play a rather important formal role in the future developments. 

Physically, one might intuit that the above single-reference version of the 
CCM is most likely to be a good approach for "closed-shell" systems, for which 
there is an essentially unique choice of model state 14). Conversely, we turn now 
to "open-shell" systems for which, a priori, a multireference approach appears to 
provide a more reasonable calculational framework. We argue by analogy with 
the single-reference ground-state CCM approach discussed above. Thus, it is clear 
that the single-reference ground-state scheme may be viewed at a rather shallow 
level as simply providing, in any particular approximation scheme, a correspond- 
ing (and, in fact, very sophisticated and clever) partial resummation of an infinite 
set of terms (or Goldstone diagrams) in the nondegenerate version of TIPT. 
Indeed, our basic Eq. (13) may be viewed in this light as an embodiment of the 
historically important linked cluster theorem of Goldstone [86] for the energy. 

In the same spirit, Brandow [87] first showed that in the intermediate 
normalization scheme there exists a similar linked diagram expansion (or "linked 
valence expansion") in the degenerate version of TIPT. This was the first such 
formulation which was both size-extensive and size-consistent, and Brandow 
showed how it was necessary for his formulation to be given in terms of a so-called 
"complete model space". This was defined to be one in which the multireference 
model state contained all possible N-body configurations (or Slater determinants 
for the usual number-conserving fermionic case) that can be formed by distribut- 
ing the valence particles among a selected set of valence orbitals. Brandow further 
showed how his perturbative expansion could be expressed diagrammatically in 
terms of so-called "folded diagrams". Several authors have since described how 
to embody and extend this degenerate version of TIPT within the CCM 
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valence orbital i. 
Fig. 2. A schematic representation of the 
essential elements of the multireference coupled 
cluster parametrization of the ket-state energy 
eigenfunctions of an open-shell system 

framework, via a multireference approach. Perhaps the earliest within the 
physical (as opposed to chemical) context were the Bochum group of Kiimmel, 
Offermann and Ey [88]. Many other variants exist, most of which have been 
especially developed for use in quantum chemistry, but for the present overview 
purposes I describe very briefly only this version. Its essential ingredients are 
indicated schematically in Fig. 2. 

Thus, we start with a closed-shell system of N particles (whose CCM single- 
reference model state is now indicated as I~U), and whose exact ground-state 
energy is E - E°) ,  and add valence particles (or holes) one at a time. The basic 
idea is to keep the closed shell as a starting wavefunction, and to incorporate 
specifically into it the extra correlations from adding the valence particles. If we 
now denote the single-particle creation operators as {a~ }, we may distinguish 
three sorts of single-particle states, namely: (i) orbitals occupied in I ~ )  
(labelled ~ # , v  . . . .  ); (ii) valence orbitals (labelled e ~ i , j , . . . )  partially 
occupied by the valence particles outside the core; and (iii) the remaining 
"unoccupied" orbitals (labelled • ~ Q, a , . . .  ). The multireference CCM ansatz 
for the exact (N + 1)-particle states is given in the form: 

] ~Lr/~v+ 1 ) = E eS[ 1 + F(1)]Cttil~u )C~, (19) 
i 

where S is assumed known from the N-body "closed-shell" calculation, and 
where the sum on i runs over the set ~ of valence orbitals considered as actually 
degenerate or quasidegenerate. Thus, the states {a,t I~N>;i C ~} form a set of 
multireference (N + 1)-body Slater determinants for the set of low-lying states 
(labelled ~) which we wish to construct. 

Whereas the coefficients { C7 } determine the mixture of uncorrelated states in 
the multireference model state, the operator F (1) now describes the dressing of 
the bare valence particle by its interactions with the core. Thus, we have the 
decomposition: 

N+I 
F( ')= E F(- 1), (20) 

n=l  

where, for example, F]') describes the one-body (Hartree-Fock) part of the 
valence problem: 

F] ') = Z Z (~ [F~nli>a~ai; (21) 
~, i 
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and F(21) describes the "core polarization" terms which arise from the correlations 
between the valence particle and any one core particle: 

F(21) =½ ~ Z Z (ql*12]F(O]iv)A at,,a~avai, (22) 
~1,~2 v i 

where the labels ql and q2 indicate any extra-core state (i.e., valence or "unoccu- 
pied"). We note that the CCM ansatz of Eq. (19) is completely general provided 
only that, as in the single-reference counterpart of Eq. (10), the states [~v+~ ) 
do not have zero inner product with all of the wavefunctions in the 
model space. 

The comparable ansatz for the two valence-particle (N + 2)-body wavefunc- 
tions is given as: 

1~+2)=~eS[l+FO)+½:FO):'+F(2)]atia]l~N)C~, (23) 
i,j 

where the factor of ½ in the quadratic term describing two "dressed" but 
uncorrelated valence particles prevents us, as usual, from counting each excita- 
tion twice; and this term is also normal-ordered so as to avoid contractions (or 
links) between them, which are more properly contained in the genuine two- 
valence-particle-plus-core correlation operator F(z): 

N + 2  

F (2) = ~ F(, 2). (24) 
n=2 

If we proceed further in this fashion to add an arbitrary number of valence 
particles outside the core, we rapidly arrive at the normal-ordered exponential 
ansatz (where the normal-ordering is always performed with respect to an 
appropriate closed-shell system or core) first written down explicitly by Lindgren 
[89], although the formulation of Ey [88] is equivalent. 

By inserting Eqs. (19) and (23) into the respective (N + 1)-body and (N + 2)- 
body Schrfdinger equations and premultiplying as usual by the factor e-S, it is 
relatively straightforward to derive equations for the energy eigenvalues E" N+1 
and E~+2. Suitable projections into the model space thus lead to secular 
equations for the coefficients C~ and C~. In fact, it is not difficult to show (and 
see, e.g. Refs. [23, 24, 88]) that these may be represented as generalized eigen- 
value equations for fully-linked one- and two-body effective Hamiltonians re- 
spectively (which yield the folded diagrams of MBPT), with 'eigenvalues' equal 
to the respective excitation energies. For example, in the single-valence case, this 
eigenvalue is e, -= E~r+l - E  °. Similarly, by projecting out of the model space 
onto "unoccupied" states, we derive the equations which determine the matrix 
elements of the operators F °) and F (2). The interested reader is referred to the 
literature cited above for further details. 

Until fairly recently, the CCM and the associated linked diagrammatic 
expansions have been restricted to complete model spaces and the intermediate 
normalization scheme. The main disadvantage of complete model spaces is that 
even for a problem restricted to relatively few single-particle orbitals, the 
dimensionality of the space can be prohibitively large for practical calculations. 
Mukherjee [90] first showed that for general incomplete model spaces, the 
condition that the CCM cluster operators and the effective Hamiltonian are both 
connected, is normally incompatible with out previous choice of intermediate 
normalization. Conversely, by abandoning this normalization, these connectivity 
properties may be reinstated. A more detailed discussion of these points would 
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take us too far afield for present purposes however, and the interested reader is 
referred instead to the literature [91]. 

Up to this point we have parametrized only the ket energy eigenstates of the 
system, and we have made use of the Schr6dinger equation itself to extract the 
energy eigenvalues without the need to consider the bra states. However, when 
we extend the discussion to arbitrary properties of the system, we cannot avoid 
the use of the bra states to form expectation values. As Fig. 1 indicates 
schematically, it is at this point that the overall CCM formalism now divides into 
the so-called normal (NCCM) and extended (ECCM) schemes [74]. (Quantum 
chemists should beware that this latter terminology has sometimes also been used 
in the past to indicate a truncated NCCM calculation that goes beyond the 
CCSD approximation.) The crucial feature of both CCM formulations is that 
the corresponding bra and ket states are parametrized independently in a way 
that does not explicitly preserve their Hermitian adjoint relationship to each 
other, and which as a consequence actually breaks it at a general (e.g. SUB(n)- 
scheme) level of truncation. The underlying reasons for this have been well 
described elsewhere [74, 75, 80], and are briefly reviewed below. 

In the first place, the most direct expression for the expectation value/i  of an 
arbitrary operator A, in an energy eigenstate whose ket form is specified in the 
single-reference CCM formulation by Eq. (10), is dearly given by: 

f i  = ( ~ ]eSt aeS I ~) /<~  ]eSt eS[ ~ ) (25a) 

= ( ~  [(eStAeS)z [ #)). (25b) 

The suifi_x L~ in Eq. (25b) indicates that this expression is again confined to a 
sum of linked diagrams [5, 92]. Nevertheless, when expanded in powers of S and 
S t, Eq. (25b) is of infinite order, unlike the corresponding expansion of Eq. (14) 
which terminates after a finite number of terms. Furthermore, if the resulting 
expansion of Eq. (25b) is approximated by truncation at any given order, the 
resulting expression no longer has the property of agreeing with the Hellmann- 
Feynman theorem [93] exhibited by the exact energy eigenstate. In turn, this 
important theorem implies that A should be calculated diagrammatically from 
the same set of Goldstone diagrams for the energy (as summed by the CCM at 
any level of truncation, for example), but in which each interaction potential is 
replaced in turn by the operator A, as has been pointed out by Thouless [94]. A 
more sophisticated method of calculating e/within the CCM due to Kiimmel 
[95] also conflicts with the Hellmann-Feynman theorem. 

Monkhorst [96] first formulated a CCM prescription for ./i which is compat- 
ible with the Hellmann-Feynman theorem, by employing techniques of linear 
and higher-order response theory. It is interesting to note, however, that he never 
explicitly introduced a functional form for A. Once supplemented [97] by the 
basis set effects that are needed for the practical analytical evaluation of energy 
derivatives within quantum chemistry, the scheme of Monkhorst was successfully 
applied [98] to the prediction of vibrational spectra and to the location of 
transition states for decomposition reactions. 

In this context, Arponen [74] introduced two distinct CCM parametrizations 
of the bra state. Neither is manifestly the Hermitian conjugate of the correspond- 
ing ket state, but both have the following advantages which more than compen- 
sate for this loss, namely: (i) they lead to explicit average-value functionals ~/; 
(ii) they are compatible with the Hellmann-Feynman theorem; and (iii) they are 
derivable from a variational principle (although the reader should beware that 
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the loss of the Hermitian-adjoint relation between bra and ket states ensures 
that the upper bound property for energies is also lost). 

The NCCM is basically a generalization of the method of Monkhorst [96]. 
The bra ground-state wavefunction ( q [  corresponding to I~) ,  where: 

( ~  [H = E(~P 1, (26) 

is the counterpart to Eq. (12), is parametrized in the NCCM as: 

(¢1 = (@ I & - s .  (27) 

Equations (10) and (27) characterize the NCCM, together with Eq. (11) for the 
operator S and its counterpart: 

g = 1 + E '  glCi, (28) 
z 

for S, which asserts that ~ is constructed in terms of destruction operators only 
(with respect to I@>). The choice of unity for the constant term in Eq. (28) 
implies the manifest normalization, ( ~  [ T > = ( @ I @ > = 1 ( = (@ I ~ >)- The 
ground-state version of the NCCM is now completely specified by the set of 
parameters {st, st }, and in particular an arbitrary expectation value ~i may be 
written in the NCCM as: 

~i = (@ [~e-SAeS[ @ ) = A[sz, 5t]. (29) 

It is important to realize that the coefficients {st, gt} are regarded as independent 
(variational) parameters, although formally we have the relation: 

(@ [eSt e s 
(@ IS = <@ [eS, eS [ @>. (30) 

The coefficients {st, gt} are themselves determined by requiring the expecta- 
tion value (29) for the Hamiltonian, /7, to be stationary with respect to all 
independent variations: 

6//  
3 ~ = 0  ~- (@[Cte-SHeS[@)=O, I # 0 ,  (31a) 

6//  
6st o ~ <~[~qe-S[H, C~]eS[@) O, I¢0 .  (31b) 

Equations (31a) are precisely the previous CCM equations for the ket-state 
coefficients {st}. Since the states {C~[@>} are complete over the many-body 
Hilbert space, they are equivalent to Eq. (13). Equations (31b) are a coupled set 
of linear equations for the new NCCM coefficients {~I}, in terms of given {si}. 
We note also that the ground-state energy calculated from the stationary point of 
/ / =  <~ [~qe-SHeSl,it' >, is identical, at any level of approximation, to our earlier 
CCM result E = (@ [e-SileSia>, due to Eqs. (31a) being satisfied. 

Although the NCCM expression, ~,/=-,/[st, gz], is generally composed wholly 
of linked terms, it is easy to see that (unlike the operator S) the new operator S 
itself contains unlinked terms. On the other hand, it was also shown [74] that 
could again be ~¢ritten in exponential form: 

= exp(27); Z = ~ '  ~tCt, (32) 
t 

in terms of a new destruction operator Z which contains only linked pieces. The 
corresponding complete parametrization of ~i in terms of the operators S and Z 
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constitutes the ECCM. Nevertheless, for many purposes it is more convenient to 
introduce also a new creation operator S, such that: 

zl ) = (1 I)e Sl¢>; = Z '   ,cl, (33) 
I 

with corresponding inverse transformations: 

~r, = (q)lCteiS[~)), s, = ( ~ [ C , e - i Z l ~ ) .  (34) 
/ . 

Either of the sets {sl, 61} or {~r/, ~i} is complete and sufficient to specify fully the 
ECCM description of the ground state. Each member of both sets is fully linked, 
but the latter set is formally more useful since it provides a set of variables which 
are canonically conjugate in some well-defined sense [75], just as also does the 
NCCM set {si, sl}. 

One of the key distinguishing features of the ECCM which follows from its 
double exponential structure (and hence also its double similarity transform 
structure, and the subsequent double-linked [74] nature of its diagrams), is that 
by contrast with the NCCM and the CI method, all of the basic amplitudes that 
completely characterize the system are linked-cluster quantities with well-defined 
diagrammatic representations [74]. In turn, they all therefore obey the very 
important cluster property, namely that they become asymptotically zero as any 
subset of particles described by the amplitude becomes far removed from the 
remainder, in real space. The entire system may thus be parametrized in terms of 
a complete set of ECCM multilocal, classical (i.e., c-number) amplitudes. It has 
also been shown [80] how an arbitrary quantum-mechanical problem with 
underlying Schr6dinger dynamics is thereby exactly mapped onto a classical field 
theory, in which the ECCM amplitudes {al, ~i} interact via nonlocal classical 
interactions. 

Extensions of the ECCM have been made [75, 99] to consider both excited 
states and general (nonstationary) dynamical behaviour, in the latter case by 
formulating an analogous variational principle for the action. It has thus been 
demonstrated how the amplitudes {ai, 61} may also be viewed as generalized 
many-body mean fields or quasilocal order parameters, by considering their 
small-amplitude oscillations around a stationary equilibrium point. The overall 
structure of the ECCM is indicated schematically in Fig. 3, and the interested 
reader is referred to the literature [74, 75, 80, 99-104] for further details. We 
note here only that the ECCM is, to the best of our knowledge, unique as a 
formulation of quantum many-body theory in which every fundamental ampli- 
tude exactly obeys the cluster property at all levels of approximation. It is clear 
that only such formulations have the possibility to describe both the local 
properties of many-body systems and such global properties as their phase 
transitions, states of topological excitation or deformation, spontaneous symme- 
try breaking, and general nonequilibrium behaviour. 

Referring back to Fig. 1, we have now completed our overview of the main 
formal aspects of CC theory as it currently exists for pure states. We mention in 
conclusion that an extension to mixed states (of relevance to systems at nonzero 
temperatures) has also been given [105], in terms of the Bloch equation for the 
statistical density operator. 

We turn in the remainder of this paper to a survey of the main applications 
of the CCM techniques described in this Section, and summarized pictorially in 
Fig. 1. 
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Fig. 3. A schematic representation of the hierarchical structure and the most general features of the 
extended coupled cluster method for quantum many-body and quantum field theory 

4. CC applications in nuclear physics 

The collection of naturally occurring atomic nuclei exhibits an exceptionally rich 
diversity of quantum many-body phenomena. In principle, they therefore 
provide the many-body theorist with a unique laboratory of strongly-interacting 
systems, on which he may test the various microscopic, universal tools at his 
disposal. Furthermore, the nuclear theorist hopes that such studies may provide 
valuable insights into the nature of the strong interaction itself. Unfortunately, 
this rather clearly defined picture has, in practice, been much blurred. At the 
heart of the underlying problem lies the fact that the internucleonic interaction 
is not uniquely known. Indeed, whereas for atoms and molecules the interelec- 
tronic forces are almost wholly Coulombic (with relativistic corrections and 
other small corrections from quantum electrodynamics, QED), in nuclear physics 
there is no well-defined potential at all. 

At the most fundamental level of our present understanding, the internucle- 
onic forces must derive from the quantum chromodynamics (QCD) of the basis 
quark and gluon fields. Just as the interatomic forces between neutral atoms are 
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the relatively complicated "remnant forces" of the underlying Coulombic forces 
between their charged constituents, so the very complex nucleon-nucleon (NN) 
force between the "colourless" nucleons is presumed to be the remnant force of 
what may be a much simpler force given by QCD between their constituent 
"coloured" quarks. At a less deep level, we may also model the forces between 
nucleons as being mediated by meson-exchange processes. The presumption is 
that this description suffices so long as we do not probe the nucleus at energies 
high enough or at distances short enough to uncover the quarkic content of the 
baryons and mesons. Thus, at this level, nuclear theory should deal with a 
consistent quantum field theory of (at least) nucleons and mesons. However, 
such multi-meson exchange processes are ill-understood, and the usual versions 
of such field theories are fraught with problems concerning renormalizability. 
Thus, with very few exceptions (and see, for example, the later discussion in Sect. 
7.2 for a particularly noteworthy CCM contribution), such calculations are not 
directly undertaken in nuclear physics. 

Instead, it has been almost universal practice since the earliest days of 
nuclear physics to model the interaction forces between collections of nucleons 
by static, few-body (and, typically, only two-body) potentials. Therefore, one of 
the most urgent questions in nuclear physics has been whether the nuclear forces 
inside nuclei are indeed well represented by a sum of two-body potential 
interactions. A more accurate statement of the question would lead us to enquire 
whether there are many-body effects that even the best two-body potentials 
cannot account for. Undoubtedly, the implicit hope and expectation was that 
two-body potentials would indeed suffice at least for the ground-state and 
low-lying energy levels of nuclei, and that many other common properties of 
them could also be similarly explained in broad qualitative outline, if not in fine 
quantitative detail. 

In order sensibly to pose the above question, one needs first to be able to 
construct reasonable and accurate representations of the two-nucleon (and, if 
necessary, the three-nucleon, etc.) force. Secondly, in order to answer it, one 
needs to have accurate many-body theories which can handle such forces with 
confidence. We consider these two points in turn. It is clearly a prerequisite of 
any NN potential used that it should fit all of the available data on NN 
scattering and on the known two-body bound state, namely the deuteron. 
Naturally, these data are subject to experimental errors, as well as being 
incomplete. For example, the scattering data extend only up to some maximum 
value of the relative momentum in a given partial-wave channel, and only in 
partial waves up to some maximum angular momentum. 

More importantly, even if the two-body (scattering and bound-state) data 
were complete, the quantum-mechanical inversion process to reconstruct the 
potential from them is not unique. Only when such additional assumptions as 
that the potential is local are made, may the potential be uniquely determined in 
principle. Thus, for example, both a local potential and a one-term nonlocal but 
separable potential can be chosen (in a given partial-wave channel, say), so that 
they are indistinguishable in terms of such on-energy-shell two-body scattering 
data as the phase shift in that channel as a function of relative momentum. 
Comparable uncertainty may be couched in terms of whether the potential 
should be local but energy-dependent, for example. Additional complications 
concern the short-range repulsion. It is difficult from experimental data alone to 
distinguish between hard-core potentials and ones with a softer, but still strong, 
core. Indeed, without being unduly radical, it is even possible to contemplate 
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potentials which have no perceptible short-range repulsion (or which are even 
attractive at short distances), at the expense of introducing energy dependence of 
a particular form, for example [106]. 

There is hence considerable uncertainty over the extraction of the NN 
potential, and this basically arises from the fact that there is no simple funda- 
mental theory for it. What is clear from the various good fits to the experimental 
data, is that the potential is just about as complicated as is permitted by the 
various invariance laws and symmetry principles. For example, it differs in every 
partial wave, and in the spin-triplet channels it takes full advantage of the 
allowed possibilities to depend on the spin coordinates. This dependence is often 
modelled for a specific spin-triplet channel in terms of a force containing both a 
(Wigner) central term as well as such spin-dependent components as a tensor 
force. It is important for present purposes to note that these complexities in the 
NN force cause no problem either in principle or in practice for CCM tech- 
niques. By contrast, many of the variational and CBF methods that have been 
implemented for simple central forces, founder when faced with such more 
complicated potentials. 

To summarize our discussion so far, there exist several quite different 
phenomenological NN potentials which provide equally valid excellent fits to the 
two-body data. On this basis (namely, on-energy-shell results) they cannot be 
distinguished. On the other hand, they differ in their off-energy-shell properties, 
and hence in their predictions for the properties of nuclei with mass number 
A > 2. Nevertheless, in order to compare their predictions for heavier nuclei it is 
clearly necessary to have a many-body theory whose results for these strongly- 
interacting systems are believed to be converged and accurate, and, ideally, are 
demonstrably so. The theoretical situation is succinctly but accurately described 
by saying that of the various techniques available (and described in Sect. 2), only 
the CCM has provided results of such quality that one can assert on that basis 
that no known two-body potential can properly describe even the ground-state 
saturation properties, let alone the low-lying excitation spectra, of a range of 
closed-shell nuclei (4He, 160, 4°Ca), and their open-shell neighbours formed by 
adding one or two valence particles or holes. 

Furthermore, we note that these CCM calculations have for the most part 
been available for ten years or so, and in the meantime no other microscopic 
technique has, to the best of our knowledge, been able to demonstrate compara- 
ble power and accuracy in this field. Indeed, even now, most of the alternative 
calculations still being performed on open-shell nuclei, using, for example, the 
degenerate versions of MBPT and the associated technology of folded diagrams, 
contain only a (small, and often inconsistent or invalid) subset of the terms 
included by the demonstrably converged results of the Bochum group 
[23, 24, 81,107]. With hindsight it is clear that these early illustrations of the 
power and accuracy of the CCM were at least a decade ahead of their time. 

Now, we know that in principle there are extra three-body effects (from 
meson-exchange) in the three-nucleon problem that cannot be represented by the 
sum of two-body effects. We might therefore be tempted to introduce suitably 
parametrized three-body potentials to model these effects. Several such attempts 
have indeed been made, although it is probably fair to say that in practice 
insufficient data exist to do this convincingly, particularly in view of the 
theoretical uncertainty which also surrounds this area. Although the incorpora- 
tion of n-body forces with n = 3, 4 . . . . .  poses none other than technical 
problems (at least for the CCM), the whole procedure only truly makes sense if 
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the process converges rapidly. In fact, so long as the theoretical tools used in 
nuclear many-body physics were not of high enough precision or, what is the 
same thing, so long as the approximations had not converged, one could still 
cling to the hope that two-body potentials might suffice to explain the experi- 
mental situation, at least at not too high an energy scale. 

The great merit of all of the highly sophisticated CCM calculations on nuclei 
(and see, e.g., Refs. [23, 24] for reviews) that have by now been performed, is 
that just because they fail to reproduce even the low-energy data, and because for 
the first time has a many-body method achieved high enough precision to be 
certain of the accuracy of the results, so can it now be claimed with confidence 
that nuclei are not many-body systems interacting via two-body forces. (Indeed, 
the inclusion of the best of the then available three-body potentials did not 
markedly improve the fit with experiment [23, 24].) Of course, in absolute terms 
this has been known for a long time, but what is important is that for the first 
time the CCM calculations have demonstrated that this simple idealized picture 
of nuclei will not serve as an adequate model for even the simplest ground-state 
structure. Many such examples are given in Refs. [23, 24]. 

We conclude this discussion on applications to finite nuclei by briefly 
mentioning some of the relevant technical details of the CCM calculations in this 
field. One of the most important concerns the hard-core nature of the NN 
interaction, which ensures that at least some part of the matrix elements of the 
two-body potential becomes infinite, in any complete single-particle basis. Finite- 
order Goldstone diagrams are thus ill-defined, and partial summations need to 
be carried out to infinite order. Within conventional MBPT this is achieved by 
re-expressing the perturbation series in terms of the "dressed" Brueckner- 
Bethe-Goldstone G-matrix [18-20], in place of the bare potential V. Each bare 
interaction is thereby replaced by an infinite ladder sum over two-body terms 
which represent repeated scattering of the pair. The rest of the many-body 
medium serves only to exclude intermediate scattering states which are already 
"occupied" (in accord with the Pauli exclusion principle), and possibly also to 
provide a self-consistent one-body potential in which the scattering pair moves. 

Certainly this basic idea of grouping interaction lines into ladder series can 
also be achieved within the CCM. Indeed, such diagrammatic structures are 
generated automatically, at even the lowest SUB(2) level of approximation. 
Where problems do arise in such truncations as the SUB(n) scheme is that the 
replacement of a bare potential everywhere in the diagrams so generated by 
iteration of the approximated CCM equations, can lead to diagrams which are 
not included at the same level of truncation. This actually occurs in both the 
NCCM and ECCM formulations at every SUB(n) level, and it thereby ensures 
that approximated cluster operators Sn are not well-defined for hard-core poten- 
tials in the standard SUB(n) truncations. 

The cure, however, is simple. It leads to the so-called (hard-core) HCSUB(n) 
scheme (otherwise known as the xn-truncation or the Bochum truncation 
scheme). Thus, at a fixed ordinary SUB(n) level, one first identifies that subset of 
terms which when iterated together leads only to diagrams which are still 
contained in this original particular SUB(n) class when each bare interaction V 
is replaced by a ladder-summed G-matrix, and when the relative time-orderings 
of the remaining interactions are kept fixed. The related HCSUB(n) approxima- 
tion scheme is closely related to the hole-line expansion of Bethe. It is discussed 
further elsewhere [23, 24, 74]. The CCM calculations on the closed-shell nuclei, 
for example, have been performed up to the HCSUB(4) level, and the two- and 
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three-body terms in the resulting equations have been treated exactly, whereas in 
the rather complicated four-body terms only their most important contributions 
have been kept. Although this latter approximation is not without danger, the 
resulting HCSUB(n) sequence of ground-state energy approximants for n ~< 4 
shows rapid convergence for all nuclei and for all choices of NN potential that 
have been studied. 

Very similar calculations have also been performed for infinite nuclear matter 
[108]. Technically, this is a more complicated system than finite nuclei, since the 
latter have a relatively large surface region and hence a lower average density. 
Within the CCM this is reflected by the fact that the three- and four-body cluster 
correlations are relatively larger in nucler matter, and the HCSUB(n) sequence is 
hence somewhat slower to converge. Nevertheless, the overall quality of the 
results is compatible with those obtained in finite nuclei. There is again disagree- 
ment between the "experimental" saturation density and energy as extrapolated 
from the semiempirical mass formula, and the converged results obtained by 
using any of the reasonable phenomenological NN potentials. The CCM results 
also agree for a given potential with those obtained using the best available 
variational techniques in this case (and see, e.g., Ref. [108]). 

Another important technical point in these nuclear calculations concerns the 
choice of single-particle orbitals. For such homogeneous infinite systems as 
nuclear matter there is no choice to be made since the requirement of transla- 
tional invariance implies that the one-body partition of the cluster correlation 
operator vanishes identically, $1 = 0. For finite nuclei a common choice is to use 
a harmonic oscillator basis with some particular choice of the ("natural fre- 
quency") oscillator parameter. Another choice has been the so-called "maximum 
overlap" orbitals (which are often denoted as Brueckner orbitals in quantum 
chemistry), in which $1 = 0 is a necessary condition. They are simply the 
solutions to the one-body CCM equation obtained from Eq. (13) by projecting 
onto the lp-lh basis, with S~ = 0. In SUB(l) approximation this is simply the 
Hartree-Fock condition, but in higher-order truncations the two- and three- 
body correlations generated by $2 and $3 have some effect on these states. Other 
choices of single-particle orbitals include the so-called "natural orbitals", defined 
to be the eigenstates of the one-body density matrix. 

For all (light and medium-light) finite nuclei studied, the results are rather 
insensitive to any reasonable choice of basis. Indeed, the maximum-overlap 
orbitals are very close to harmonic oscillator functions, and hence the latter basis 
with a reasonable choice of oscillator parameter (appropriate to the average 
density of the nucleus) works rather well. In this sense the situation in nuclear 
physics is quite unlike that in quantum chemistry, where the selection of the 
starting single-particle orbitals is itself a major task. Presumably this is largely 
due to the more complicated geometry. 

We note parenthetically in this regard that K/immel [109] has also investi- 
gated the sufficiency conditions for the maximum-overlap orbitals actually to 
maximize the overlap of the model state ] • > with the true state ] ~ >, rather than 
merely to extremize it, as given by the usual necessary condition. He shows in 
particular how the extra sufficiency criterion can be utilized in practice to identify 
within the CCM the onset of a critical "shape instability" which marks the 
transition to a different optimal basis, or configuration, as some appropriate 
internal parameter is varied. 

A final technical point concerns the general fact that model reference states 
often violate some exact symmetry. A relevant example here is that unless the 
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single-particle orbitals are plane waves,the model state I~)  is not an eigenstate 
of the total linear momentum operator P, and hence not translationally invariant. 
Nevertheless, the exact nuclear ground state should be a simultaneous eigenstate 
of both the Hamiltonian H and fi, since [H, fi] = 0. Thus, we expect to be able 
to impose that the full CCM representation of the wavefunction given by Eq. (10) 
is an eigenstate of/~, so that we have in addition to Eq. (13): 

e -SpeS] ~ )  =/~1 ~) .  (35) 

On the other hand, in SUB(n) or HCSUB(n) approximations we shall not 
generally be able to preserve the exact translational invariance. 

Most calculations in nuclear physics have dealt with the above problem by 
using the internal Hamiltonian: 

H -+ Hin t = H - TCM, (36) 

where TCM----- fi2/2M is the kinetic energy operator of the centre of mass (CM), 
and M is the total mass. For a system of A nucleons of mass m each, momentum 
Pi, and interacting via pairwise NN potentials V~j, the internal Hamiltonian is thus: 

Hin t = 1 - ~m + V° " (37) 
i=1  i < j = l  

The main effect of the removal of the CM energy, which is itself most important 
for the lightest nuclei, is thus to produce a momentum-dependent interaction term. 
All of the calculations done by the Bochum group [23, 24, 81,107] noted above, 
have been performed using the Hin t of Eq. (37). Undoubtedly, at any level of 
approximation, its use is essentially a compromise between using the exact Eqs. 
(13) and (35) and neglecting the CM motion entirely. Fortunately, this approxi- 
mation has been checked recently [76] for the 4He nucleus, and has been seen to 
be very good even for this very light nucleus. (In general, the approximation 
incurred by the use of Hin t is no worse in any CCM truncation than the errors 
inherent in that particular approximation from the neglect of higher-order 
correlations.) Finally, this latter work has also shown how to incorporate the CM 
motion exactly into the CCM prescription at any level of approximation, so that 
it provides a rigorously translationally-invariant formulation. In so doing it shows 
how the CCM may also be expressed more directly in terms of a coordinate-space 
description. 

5. CC applications to one-component Coulomb plasmas 

The electron gas (or "jellium") is one of the theoretically most well-studied of all 
quantum many-body systems. It was originally invented to model the electrons 
in a metal, in a simplified form in which the ionic lattice is replaced by a uniform 
positive charge, as an inert neutralizing background. The two-body potential is 
otherwise pure Coulombic. It is given in the momentum-space representation as: 

V(~) = 4ne---~ (1 - 6oo ), (38) Dq 2 

where D is the normalization volume. More generally, a system of N identical 
particles (bosons or fermions), of mass m and charge e each, interacting via the 
two-body potential of Eq. (38), is denoted as the one-component Coulomb 
plasma. The number density, 0 = N/O, may be expressed in terms of the only 
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independent dimensionless coupling constant, r~ = ro/ao, which characterizes the 
system, namely the average interparticle spacing, ro, in units of the Bohr radius, 
ao = hZ/me 2. One may also equivalently specify Q in terms of a (what is for 
bosons purely fictitious) Fermi wavenumber, kF, applicable to an unpolarized 
spin-½ system: 

O = (4z~r~a3/3) - '  = k3/3rc2. (39) 

Henceforth, we also employ units such that h = 1. We note that Eq. (39) implies 
the relation: 

kFao = (ars) -1; ~ = (9n/4) -1/3. (40) 

It is convenient to define the ground-state energy per particle in Rydberg units 
as: 

E / N  = e(e2/2ao), (41) 

and similarly to scale, as needed, any momentum variable 4 in units of k e defined 
in Eq. (39), 4 = ke~. 

The one-cOmponent Coulomb plasmas are interesting systems for study 
because they contain only one dimensionless coupling constant rs, and because 
they exhibit a phase transition between the high-density (weak-coupling, rs ~ 0) 
plasma limit and the low-density (strong-coupling, r~ ~ oo) limit of a Wigner 
crystal. The quantum statistics play a crucial role at high and intermediate 
densities, but become less and less important in the essentially classical low- 
density limit. Furthermore, these systems are highly nontrivial for all values 
of rs, due to the long-range (r-1) nature of the Coulomb potential. 

Let us first consider the CCM treatment of the algebraically much simpler 
bosonic plasma. As reference state we take the zero-momentum condensate: 

I ¢ ) = (U!) -'/~(b o*) ~10), (42) 

where 10) is the vacuum state, and {b~} are a complete set of single-boson 
creation operators. In the plane-wave, momentum-eigenstate representation we 
thus have that ~ ~ 0 labels the sole "occupied" (and hence hole) state, and ~ ~ 4 
( # 0) labels the "unoccupied" particle states. The cluster correlation operator of 
Eqs. (10)-(11) may now be explicitly expressed as: 

U 1 
S =  ~ Sn; S n = ~  ~ S~(4, . . . .  ,4~)bqt., . . .bt~.(N-' /2bo)",  (43) 

n=2 qI qn 

where the matrix elements in Eq. (43) are subject to the condition ~7= 1 4e = 0, 
which arises from the assumption that the (N ~ ~ )  ground state is that of a 
homogeneous (translationally-invariant) phase. 

In the present case where the interaction potential is of local two-body type 
and with the additional constraint from Eq. (38) that V(4 = 0) = 0, it is relatively 
straightforward to show that the exact two-body equation for S2(q) ~ $2(4, - 4 )  
becomes (in the thermodynamic limit where N ~ oo at fixed Q): 

q2 ~ d4' 
m S2(q) + Tgr,h + Vcp + TLAD + £2 J ( ~ ) 3  V(q') 

X [2N1/2S3 (4, q ' ,  - -  4 - -  4 ' )  -~- 1 g S 4 ( q ,  - -  4, 4 t} - -  4')]  = 0, (44)  
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where 

TRPA = NV(q)[1 + Sz(q)] 2, (45a) 

E S Tcp= - 4  ~ 2(q), (45b) 

[ d0' * 'S  ' TLAD = ~ j(2~)3 V(0 -- q ) 2(q ), (45c) 

and where the ground-state energy is given by: 

E l ~ f  dO = ~ (~-~n)3 V(q)S2(q), (46) 

Equation (44) may be rather easily written diagrammatically (and see, e.g., Ref. 
[110b]). 

The SUB(2) approximation is obtained from Eq. (44) by setting $3 and $4 to 
zero. The remaining four terms represent respectively: (i) the kinetic energy (KE) 
contribution; (ii) the terms that together with KE generate precisely the random 
phase approximation (RPA); (iii) the terms that generate the self-consistent 
energy insertions on the hole lines, namely the condensate potential (CP) terms; 
and (iv) the terms that generate the two-boson ladder (LAD) diagrams for 
repeated scattering of a pair from out of the condensate. When fully expressed 
in terms of dimensionless variables, the SUB(2) equation for the bosonic 
Coulomb plasma becomes: 

4~rs ~rs fo ~ x2S2(x) + 3~5x 2 [1 + S2(x)] 2 -  2(otr,)2sS2(x) +--nx dx' x' In S2(x') =0, 
X ~ - - X  

(47) 

~0 °3 2 dx S2(x). (48) 
e n~rs 

Although the nonlinear equation (47) is readily solved numerically, it is more 
instructive to examine its high- and low-density limits. In the high-density limit 
it is trivial to show that: 

e ' Q r s  3/4 -4- R, (49) 
rs ~O 

and furthermore that only the KE and RPA terms contribute to leading order, 
to give the well-known exact result: 

16 (3"~1/4 F( 3 ) 
a = -~ - \ r c2  j ~ ~ -0.8031, (50) 

first obtained by Foldy [111]. The CP and LAD terms also contribute to next 
order to give a SUB(2) value for the constant R of 16/9~. Inspection of Eqs. 
(44)-(45) shows that the coupling terms to S 3 and $4 also contribute to the 
constant R (although not to Q). A careful and detailed calculation [ll0c] 
including these terms leads to the value R ~ 0.0280, and an intricate rearrange- 
ment of terms shows that this result is identical to the first correct result 
reported, namely that of Brueckner [ 112]. It is worth pointing out here that by 
contrast with most competing approximate methods, each term generated by 
SUB(2) is finite, and no (cancellations between) spurious logarithmic singulari- 
ties occur. This particular point stems from the more general feature of the CCM 
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that terms which tend to cancel each other are automatically grouped together or 
never split apart. 

In the even more interesting strong-coupling limit, rs--, oo, one may not 
expect the SUB(2) approximation based on the condensate model state to be at 
all reasonable, since one imagines that n-body dusters with n >> 2 are now 
important. Indeed, we expect the system to Wigner crystallize below some critical 
density, and such a crystal phase is an archetype of a situation where N-body 
correlations dominate. The translational-invariance symmetry of l~> and the 
Hamiltonian is also spontaneously broken in the crystalline phase. However, in 
the SUB(2) approximation we find the behaviour: 

s , - - A R T  1 + B r ;  3/2 + O(rj-2), (51) 
rs---~oo 

and we also see that the KE term contributes first to the constant B in leading 
order. Although each of the terms RPA, CP and LAD is necessary for a 
quantitative evaluation of the constant A, they play quite different physical roles. 
Whereas the RPA terms continue to be vital for the correct analytic behaviour 
by providing the correct long-range (q ~ 0) Coulomb screening, the CP now 
plays a similarly crucial role in the short-range (q ~ oo) limit. Although the 
inclusion of the LAD term quantitatively changes the constants A and B, it may 
safely be omitted without changing the analytic form of Eq. (51) for the 
low-density energy expansion. 

Dropping the LAD term, for example, leads to the analytical results A = 
(32/3zc2)1/3 ~ 1.03 and B = x/~Ir/8 ~ 0.68. The virial theorem may also be used 
to show that in this low-density expansion the leading term is purely potential 
energy, whereas the much more interesting second term in Eq. (51) has equal 
kinetic and potential energy contributions. This result is strongly indicative of 
the simple harmonic motion expected of a (classical) solid. Indeed, Wigner first 
pointed out that in this limit, where the potential energy dominates, the energy 
is minimized by the particles crystallizing; and this leads to an electrostatic 
energy proportional to rs  ~. Whereas in a fluid phase the particles are free to 
occupy the whole volume, and hence by the uncertainty principle have a kinetic 
energy proportional to r; -2, the particles in the Wigner solid are constrained to 
oscillate about fixed lattice sites and hence to have a greater kinetic energy. By 
simple harmonic motion considerations, this latter energy is easily seen to vary 
a s  rZ 312. 

Thus, our SUB(2) approximant for the ground-state energy has the correct 
analytic form of a solid, even though the coefficients are not very close to the 
b.c.c, crystal values of A ~ 1.792 and B ~  2.65. (We note that the inclusion of 
the LAD term only increases this discrepancy by reducing the value of A by 
about 20%.) What is most important however is that even the lowest SUB(2) 
approximation of the CCM gives a low-density energy which cannot possibly 
represent a fluid phase since the particles are not free to occupy the whole 
volume. It is clear that the translationally invariant approach based on the 
condensate model state, well describes both the plasma (fluid) and symmetry- 
broken solid phases. Although it is at first sight surprising that the fluid-like 
SUB(2) wavefunction is capable of describing an (amorphous or glassy-state 
approximation to the crystalline) solid phase, it is apparent that strong many- 
body correlations are indeed built into the wavefunction. Nevertheless, the 
coupling terms to $3 and $4 are still non-negligible, and need to be incorporated 
for a better quantitative treatment. Conversely, having observed from the 
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ground-state CCM energy calculation alone that a transition to a solid-like phase 
has occurred, one could now do a much better job on such a phase by choosing 
a new model state I~)  that contained the symmetry of some imposed lattice 
rather than the previous perfect translational invariance. 

We turn next to the fermionic Coulomb plasma, and for ease restrict 
ourselves to the unpolarized spin -1 "electron gas". The translationally-invariant 
analogue of Eq. (42) is now the usual filled Fermi sea, ]~F), with a Fermi 
momentum given by Eq. (39). In the thermodynamic limit the fermionic SUB(2) 
analogue of Eq. (47) is a nonlinear integral equation in three three-momentum 
variables for the antisymmetrized matrix elements. 

(52) 

which now depend not only on a momentum transfer 0 as for bosons, but also 
on the two hole-state momenta/~1 and/~z inside the Fermi sphere, as well as the 
spin-projection indices al, Gz ( =  +½). The corresponding SUB(2) equation for 
fermions is therefore algebraically much more complex than Eq. (47). It has been 
described fully elsewhere [ 110a]. 

Once again, it can be shown [110] that in the weak-coupling (rs ~ 0) plasma 
regime, the fermionic SUB(2) equation reduces to a leading contribution which 
is the complete analogue of the KE and RPA terms of Eq. (44). The RPA 
[21, 22] is well known to give exactly the leading high-density contribution to the 
correlation energy, ac, where: 

- ~o+ ec; (qiFIHI~F> =N~o • (53) 

The corresponding nonlinear RPA equation for $2 has been solved exactly 
[ 110a], and the leading (logarithmic) contribution to ec at high densities has been 
verified. 

In the intermediate-coupling regime (1 ~< rs ~< 5) of metallic densities, we no 
longer expect RPA to suffice. Quite apart from ignoring (i) the simple exchange 
terms needed to antisymmetrize RPA, we have neglected even in SUB(2) 
approximation: (ii) all combined particle-particle and hole-hole ladder terms, 
some at least of which are important for correct short-range behaviour; (iii) the 
self-energy correction terms which self-consistently generate both the particle 
potential and the (more important) hole potential; (iv) classes of higher ring- 
exchange terms to preserve overall antisymmetry; and (v) other exchange terms 
which include the particle-hole ladders. Since the full SUB(2) equation is so 
technically complicated, a "state-averaging" approximation method was intro- 
duced [ 110] in order to proceed systematically beyond RPA. It was motivated by 
analogy with the mathematically much simpler Bose equations (44). The basic 
pproximation is to average inside the Fermi sea over the hole momenta/~ and 
2 in $2(/~1,/~2; q), where here and henceforth we drop the spin-projection indices 

for ease. However in performing this averaging the very important Pauli exclu- 
sion principle is preserved by insisting that the particle momenta (/~a + 0) and 
(/~2- 0) simultaneously lie outside the Fermi sea. In this way the exact 
S2(/SI, k2; ~) is replaced by an approximate state-averaged S2(q), and the corre- 
sponding CCM equation must itself still be suitably state-averaged. 

This latter step is not unique. Nevertheless, this may be put to advantage by 
bringing physical intuition to bear. Another most important point is that since 
exact results are known for $2 in the RPA limit, any averaging procedure may 
be checked in at least this case. As a simple illustration we imagine putting this 



An overview of coupled cluster theory and its applications in physics 125 

scheme into effect for RPA itself. Within the CCM this comprises an equation 
for $2 which involves only the kinetic energy (KE) and RPA terms analogous to 
the first two terms in the bosonic Eq. (44). After the replacement $2 ~ $2, the 
only remaining hole-state dependence is in the KE term which has the familiar 
form: 

1 
2~ [1/~ 1 _[_ ~[2_~_ [~2_~]2k2k2]S2(~l,~2; ~) -eS2. (54) 

As two obvious averaging schemes one could imagine either (i) replacing 
e ~ ( e ) ;  or (ii) the intuitively and physically more appealing replacement 
e - l ~ ( e  - I )  after first dividing through by e; i.e. averaging the two-body 
propagator or "energy denominator". 

Precise details for performing these averages are described in Ref. [ll0b], 
where it is also shown that the former procedure, e ~ (e) ,  leads precisely to the 
so-called "mean spherical approximation" discussed by Zabolitzky [113] in this 
context. This approximation arose in the rs--, 0 limit in his state-independent 
variational treatment of the electron gas via a Fermi hypernetted chain (FHNC) 
type of procedure. Whereas this mean spherical approximation is in error for the 
correlation energy ec by 8.4% in comparison with exact RPA results, it was also 
shown that the energy denominator averaging e -~ ~ ( e - ~ ) ,  is exact at rs ~ 0 ,  
and to give for the RPA better than 2% accuracy at all densities by comparison 
with the exact results obtained earlier [110a]. Furthermore, it is argued that there 
is no reason to expect worse accuracy (and, indeed, several reasons to expect 
better accuracy) for all remaining terms in the Fermi CCM SUB(2) equation. 

This state-averaging procedure was then carried out on the full SUB(2) 
equations, and indeed with the additional inclusion of some of the most 
important contributions from the coupling to $3 and $4. These included the 
replacement of the bare Coulomb potential V in SUB(2) terms other than those 
directly responsible for generating the two-body ladder diagrams, by a self-con- 
sistent G-matrix (i.e., one obtained from the full $2 solution itself). Such 
attention to these and other important effects caused by the interference at 
intermediate separations of the long-range RPA and short-range ladder-sum 
effects, is necessary for a precise quantitative evaluation of the correlation 
energy. Results from such calculations were first presented by Bishop and 
Lfihrmann [110]. They were later repeated by Emrich and Zabolitzky [114]. 
These latter authors also avoided the use of several additional unnecessary 
approximations made by the former, and their CCM results are shown in Table 
1. They are labelled CC(4) to indicate that they include at least part of the 
contributions from triple and quadruple excitations. 

Finally, we compare in Table 1 the CC results with the Green's function 
Monte Carlo resuRs [115] which come from an essentially exact (apart from 
statistical errors) stochastic simulation of the many-body Schr6dinger equation. 
We also compare with representative results from the best of the other available 
calculations, namely the variational calculation of Zabolitzky [113] already 
alluded to above, and a more phenomenological calculation of Vashishta and 
Singwi [116]. It is clear that over the entire metallic density regime the CCM 
results are well within the comparable benchmark of chemical accuracy discussed 
in Sect. 1. Indeed, we know of no better microscopic description of the electron 
gas at these densities. 

We note that excited states of the one-component Coulomb plasmas may 
also be investigated within the CCM, although relatively little work has been 
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Table 1. Correlation energy per particle (in milli-Rydbergs) of the unpolarized electron gas, for 
various values of the dimensionless coupling constants, r e 

rs 
Method 

~ 0  1 2 3 4 5 6 10 20 

RPA 62.21nr~ - 1 5 8  - 1 2 4  - 1 0 6  -93 .6  -84 .9  -78 .2  -61 .3  -42 .8  
CC(4) a 62.21n r, - 1 2 2  -90 .4  -73 .8  -63 .4  -56 .0  -50 .5  -37 .0  -23 .6  
GFMC b [62.21nrs] -121  -90 .2  [ -73.8]  [ -63.6]  -56 .3  [ -50.7]  -37 .22 -23.00 
FHNC ~ 57.01nr s - 1 1 4  -85 .9  -71 .0  -61 .2  -54.1 - -  -35 .5  -21 .8  
VS ° - -  - 1 3 0  - 9 8  - 8 1  - 7 0  - 6 2  - -  - -  - -  

a CCM results of Emrich and Zabolitzky [114] 
b Green's function Monte Carlo results of Ceperley and Alder, with the results in brackets obtained 
by the interpolation procedure of Vosko et al. [115] 
c Results of a Fermi hypernetted chain type of calculation of Zabolitzky [ 113] 
d Results of a phenomenological approach of Vashishta and Singwi [ 117] 

done [ll0c]. In particular, the well-known "giant resonance" (or collective 
excitation) for the electron gas at high densities, namely the plasmon mode, may 
be identified via the SUB(l, 2) approximation. Other authors have also investi- 
gated the electron gas using CC techniques (and see, e.g., Ref. [117]). In 
particular, Arponen and Pajanne have given an ingenious mapping of the 
fermionic problem onto an equivalent bosonic problem, which is then itself 
treated by CC techniques. Finally, we note that the CC techniques have also 
been formulated for two-component Fermi systems, using both a "normal" 
(filled Fermi sea) model state and a "superfluid" (BCS) model state [118]. 

6. CC applications to model many-body problems 

We turn next to some applications of CC techniques that have been made to 
various model systems in quantum many-body theory. Such systems are espe- 
cially useful either because they are exactly integrable, and hence provide exact 
benchmark results against which universal methods may be tested, or because 
they are simple enough so that such features as the convergence properties of the 
approximation schemes (e.g., the standard SUB(n) scheme for ground states or 
the SUB(m, n) scheme for excited states) may be numerically (or even analyti- 
cally) examined. Since the specific details of these models are perhaps of less 
direct interest for quantum chemistry applications, we review them only very 
briefly. Nevertheless, we stress that such applications are important for the 
formal development and deeper understanding of the CCM. The specific model 
systems that we discuss here are: (i) the discrete Lipkin-Meshkov-Glick 
quasispin model [79]; (ii) the continuous one-dimensional Lieb model [119] of 
bosons interacting via repulsive delta-function potentials; (iii) one-body quantum 
anharmonic oscillators considered as model bosonic field theories with a single 
mode; and (iv) the discrete analogues of the latter in the form of anharmonic 
spin systems [ 103c]. 
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6.1. The Lipkin - Meshkov -Glick quasispin model 

The model many-body Hamiltonian of Lipkin, Meshkov, and Glick [79] (the 
LMG model) was originally invented to simulate the collective monopole vibra- 
tions in spherical atomic nuclei. At the most general level, interest in such models 
as the L M G  centres on the fact that they exhibit a phase or shape transition at 
some critical value of a coupling parameter in the regime for which perturbative 
techniques are invalid, and for which the RPA would give imaginary values for 
the excitation energy of a collective mode. Such an occurrence is usually taken as 
evidence that the unperturbed or model ground state is unstable against some 
collective vibrational mode, and that another solution of the Hartree-Fock 
equations exists which exhibits a finite deformation of this particular mode. It is 
precisely in this context that Kfirnmel [109] performed his "shape instability 
analysis" within the CCM, to which we have already referred above. In nuclear 
physics, the transition from spherical to deformed shape which occurs in the 
regime of the rare-earth nuclei is believed to be due to a collective quadrupole 
excitation of this type, and the L M G  model was first introduced as its simpler 
monopole analogue. 

The L M G  model thus consists of N identical fermions distributed between 
two energy levels with energy difference e, each of which is N-fold degenerate. 
The Hamiltonian is taken to be: 

1 H =  ~ Z ma~,map,m + i v  2 at at a a p,m p',m~p',--m~p,-m , 
p,m p,p',m 

(55) 

where the quantum number p = 1, 2 . . . . .  N labels the degenerate single-particle 
states within each level, the index m = - 1, + 1 labels the lower and upper levels 
respectively, and the operators {atp,m } and {ap,m } respectively create and destroy 
a fermion in the state (p, m). They obey the usual anticommutation relations: 

{ap,m, atp',m '} = Opp'~mm'; {ap,m, ap,,m, ) = O. (56) 

The two-body matrix elements are simply all set to the same constant value 1 ~z, 
and the Hamiltonian has the form of a simple pairing model in which a pair of 
particles in the lower (upper) level may be scattered only into the corresponding 
levels in the upper (lower) level with the same values of the quantum number p. 

The construction of such models is predicated on the observation that 
bilinear products of creation and annihilation operators may be considered as 
generators of Lie groups. In the present case one may define quasispin operators: 

J+ ==- Z atp,+lap,_l =~Jx ÷ iJy, 
p 

J -  - Z a+~_,ap,+l --  J~ - i J , ,  (57) 
P 

Jz ~ ½ Z matp,map.m , 
p,m 

and hence show from the relations (56) that they obey 
momentum commutation rules of SU(2): 

[J+, J_ ] = 2J~, [J~, J+ ] = _ J+. 

the usual angular 

(58) 
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The L M G  Hamiltonian of Eq. (55) is then trivially rewritten in the exact 
equivalent quasispin form: 

H = e [ J z  1 -1 2 + ~ g N  (J+ +j2_)], (59) 

where g =-- NV[~ is the dimensionless interaction strength parameter. It is easy to 
see that this Hamiltonian conserves the total quasispin and parity, since it 
commutes with the corresponding operators: 

[H, a 7z] = 0; ]2 _-__ jz  x + j~ + j e, (60a) 

[H, / / ]  = 0; / / -  exp[irffJz + ½N)]. (60b) 

An obvious choice of CCM model state is the Slater determinant with all 
particles in the lower level: 

N 

I~> = [ I  @_,10) ,  (61) 
p = l  

where 10> is the vacuum state, ap,,. [0> = 0. The state 1~> clearly also has the 
property: 

J_ I~> = 0. (62) 

Furthermore, it is an eigenstate of  the operators jz  and Jz with respective 
eigenvalues j ( j  + 1) and - j ,  where j 1 = gN. Due to Eq. (60a) the interacting 
ground state may be sought from the (2j + 1)-dimensional subspace spanned by 
the vectors {l J, m>; m = - j ,  - j  + 1 . . . . .  j} where l J, rn> oc (J+y+m[j, - j > ,  and 
we have equivalently to Eq. (61): 

]~> = l j, - j > ,  (63) 

Physically, the L M G  model displays an interesting shape transition in the 
vicinity of  a critical coupling strength gc, where gc ~ 1 as N ~ oo [ 120]. For finite 
N, and working in the RPA (or time-dependent Har t ree-Fock  approximation), 
we find that the excitation energy of the collective excitation becomes zero at 
gRPA = N / ( N  -- 1). This signals an actual shape transition to a state for g > gc 
with nonzero value of  the order parameter (Jy >, whereas (Jy > = 0 for g < go. 
The symmetric Har t ree -Fock  solution ]q~) of Eq. (61) becomes unstable in the 

_R P A  RPA for g > ~ , and in this region there are two degenerate Har t ree-Fock  
solutions I~'+ > [109], which break the parity symmetry: 

N 

>:  lq b;_,10>, 
p = ,  

1 , . " L[~ N ]_~ (64) 
b ; , - 1  = c o s ( 5 c t ) a p ,  1 q- i sln(½~)apt,+l, ~ = + c o s - '  N 2i)g " 

Of course, the transition is not actually sharp for finite N since the two 
broken-symmetry solutions can communicate by quantum tunneling through a 
finite potential barrier. Thus, for large N and/or large g, the lowest states form 
closely-spaced parity doublets. The true ground state, for example, has even 
parity, and the first excited state has odd parity and an excitation energy which 
becomes exponentially small for large N in the region g > g~. 

The ground-state energy of  the L M G  was first studied in the NCCM by 
Lfihrmann [121], and the excitation spectrum was similarly examined within the 
N C C M  by Emrich [81b]. Both of these authors studied only the symmetric 
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phase, for values g < 0.9, employing respectively the standard SUB(n) and 
SUB(m, n) schemes. Liihrmann in particular showed that the CC results were at 
least as good as those obtained by such more traditional approaches as the RPA, 
Brueckner theory, and MBPT. On the other hand, Arponen [122] has shown that 
not only can the SUB(l) approximation based on the state 1~) of Eq. (61) not 
produce the correct Hartree-Fock deformed states 1~'_+ ) of Eq. (64), but nor 
can the higher NCCM SUB(n) approximations give reasonable results in the 
deformed phase g > 1, even when symmetry breaking is introduced by allowing 
odd-indexed cluster amplitudes (which are otherwise zero for a parity eigen- 
state). The NCCM gives good results in the deformed region only be employing 
a more realistic non-spherical model state of the type given in Eq. (64), found by 
some external means such as that of Ref. [109], and by redefining the creation 
and annihilation operators with respect to this state. We note that this situation 
is familiar in many perturbative approaches to quantum field theory, which 
require the field to be quantized around that particular broken-symmetry model 
vacuum state which most closely resembles the true ground state. 

By contrast, the ECCM has been shown [74, 122] to be able to find the 
appropriate deformed model state completely automatically. The ECCM is 
capable of spanning the region of the shape transition using a single model state, 
to give an excellent description of the energy spectrum in both the symmetric and 
deformed phases [102, 122]. The sensitivity of the method to the choice of model 
state has also been examined [102] by using both the symmetric and broken- 
symmetry Hartree-Fock states, which are themselves fully equivalent to the 
ECCM SUB(l) solutions, whether or not symmetry breaking occurs. 

The overall quality of the ECCM results for the LMG is extremely encourag- 
ing, even at relatively low levels of truncation, outside a narrow critical region 
whose width decreases as N increases. Indeed, we know of no equally fundamen- 
tal microscopic formalism that can give better overall results for this model. 
With a single model state one can accurately reproduce within the ECCM 
virtually all of the quantitative and qualitative details of the energy spectrum. 
The only noticeable exception is the splitting of the nearly degenerate parity 
doublets that occur for g >> 1. It seems that a fundamentally new, broken-sym- 
metry (global) version of the multireference CC approach is needed here, as has 
been discussed in Ref. [102]. We return to this point in Sect. 10. 

6.2. The one-dimensional exactly integrable Lieb model 

The so-called Lieb model [119] was introduced in 1963. It comprises a gas of N 
identical bosons constrained to move in a one-dimensional box of length L, and 
interacting via a pairwise repulsive delta-function potential. In units in which 
h = 2m = 1, where m is the mass of each boson, the Hamiltonian has the form: 

d 2 N 
H = -  +2c ~ 6 (x i -x j ) ;  c > 0 .  (65) 

i=1 ~X~ i < j = l  

We are most interested in the thermodynamic limit where N ~ c~ such that 
Q = N IL  remains finite. Like the electron gas the Lieb model is again conceptu- 
ally simplified by the fact that it has only one dimensionless coupling constant, 
7 = c/Q. The strong-coupling limit y ~ ~ corresponds precisely to the case of 
one-dimensional hard-core bosons, first solved by Girardeau [123]. 
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Lieb and Liniger demonstrated that the Hamiltonian of Eq. (65) is exactly 
integrable for all values of ?. By considering a Bethe-ansatz [124] type of 
wavefunction they could solve for both the ground state [l19a] and the excited 
states [119b], and in the thermodynamic limit they derived integral equations for 
the corresponding energies. The system has two interesting features. In the first 
place, the elementary excitation spectrum for all y > 0 looks like that of ideal 
fermions (rather than of ideal bosons). The second point is more subtle, but it 
seems to be a general feature of exactly soluble models. Thus, the solution to the 
integral equation for the ground-state energy is simple to obtain in the strong- 
coupling regime, 7--*~, whereas as ~ ~ 0  the solution becomes singular. B y  
contrast, the simple Bogoliubov approximation becomes asymptotically exact in 
this latter limit although, as Lieb has pointed out, this approximation is itself 
very difficult to justify rigorously. Finally, we also note that the Lieb model is the 
continuum limit of the one-dimensional discrete chain model for spin -1 particles 
(with spins gi on the sites i of the chain) interacting via the nearest-neighbour 
XXZ-model (or anisotropic Heisenberg model) Hamiltonian: 

N 
n = ~ (s~s~'+l +sYsY+l + As~Sf+l), (66) 

i=1 

which is also discussed in Sect. 8. 
In many ways the electron gas (Coulomb interaction) and the Lieb model 

(delta-function interaction) are archetypes of systems dominated respectively by 
long- and short-range interactions. It is therefore also of interest to apply our 
universal many-body techniques to the Lieb model. A very limited amount of 
work has been done in this regard [78, 125]. We find that both the NCCM and 
ECCM give good results at low truncation levels in the weak-coupling regime, 
y ~ 0, using for the model state I~ > either the number-conserving condensate of 
Eq. (42) or the number-nonconserving field-theoretic vacuum. However, neither 
method in the standard SUB(n) truncation scheme gives the correct analytic 
behaviour of the ground-state energy for practicable values of the index n in the 
strong-coupling regime, 7 ~ oo. By contrast, parquet theory and Jastrow varia- 
tional techniques seem to perform much better. This has led us to suggest new 
CCM truncation schemes [78], based on a detailed study of the similarities and 
differences between the two methods. We elaborate on this point in Sect. 10. 

6.3. Anharmonic oscillators; single-mode bosonic field theories 

The one-dimensional, single-well quartic anharmonic oscillator is described by 
the one-body Hamiltonian: 

H=lp2-F-½x2 q-~,x4; ~ > 0 ,  (67) 

(in units where h = rn = 1, and m is the particle mass), where p--* - i d /dx .  It is 
an important system in quantum mechanics because it is known that Rayleigh- 
Schr6dinger perturbation theory about the 2 = 0 unperturbed harmonic oscilla- 
tor fails to converge for all values of 2, however small [126]. Furthermore, by 
introducing the usual destruction operator a ---- 2-1/2(x + ip) and its Hermitian 
adjoint a*, Eq. (67) may be written in the equivalent form: 

1 H = ~ + ata + ¼2(a + at) 4, (68) 
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namely as a single-mode bosonic field theory, since a and a t obey the usual 
bosonic commutation relation: 

[a, a *] = 1. (69) 

Hamiltonians of the form of Eq. (68) are just the (0 + 1)-dimensional analogues 
of real (d + 1)-dimensional field theories in a nonzero number d of space 
dimensions and one time dimension. Considered as just such a model field theory, 
the anharmonic oscillator also provides an extremely stringent test of many-body 
formulations like the CCM which are specifically designed for local field theories 
or systems with normal locality and separability properties. By contrast, the 
Hamiltonian of Eq. (68) is highly singular in the sense of exhibiting maximal 
nonlocality, and possessing no attribute of separability or size-extensivity. 

In order to apply CC techniques to Eq. (68), an obvious choice for the model 
state 14~) is the vacuum state 10a ) for the bosons of Eq. (69), al0a ) = 0. On the 
other hand, one may also consider making a (linear, canonical) Bogoliubov 
transformation [127, 128] to a new bosonic basis: 

b = (1 - t 2) - ' / 2 ( a  - t a t ) ;  I tl < 1, 

[b, b*] -- 1, (70) 

and similarly to employ the vacuum state 10b ), where b [0b ) -- 0, as model state 
I~) .  In the former case the Fock space is spanned by a complete, orthonormal 
set of creation operators {C~} ~ {(n!)-U2(at)n; n - -0 ,  1, 2 . . . .  }, and similarly in 
the latter case by a t ~ b t. The free parameter t may be chosen by one of several 
(variational) criteria. For example, the Hartree choice minimizes the expectation 
value (0b Inl0b >; whereas the maximum overlap condition maximizes the quan- 
tity ( 0b ]~ )  where ] ~ )  is the (normalized) exact ground state. One expects that 
some such "good" choice of the parameter t will accelerate the convergence of 
subsequent truncation schemes. 

The CI method, NCCM, and ECCM may now all be put into effect in their 
respective standard SUB(n) and SUB(m, n) truncation schemes for ground and 
excited states. One of the great advantages of the simplicity of the model is that 
one may proceed computationally to very high values of the truncation indices 
m and n in order to investigate the convergence properties of the individual 
methods numerically. Several such investigations have now been performed 
[82, 103, 127-131], the most ambitious of which use truncation indices 
m, n < 30. Recent investigations [103, 104] have also explored the structure of 
the exact NCCM and ECCM representations much more deeply, by employing 
the holomorphic or Bargmann-space representation in which we replace a ~ d /  
dz ,  a t ~ z ,  in terms of a complex number z. 

For relatively low values of the truncation indices m and n in the standard 
SUB(m, n) scheme based on the Hartree vacuum as model state, for example, 
both the NCCM and ECCM give very good values for the energy levels of this 
very demanding model. For example, for the ground-state energy, the SUB(6) 
truncations give values which are accurate to better than 0.1% over the entire 
range of ~.. Nevertheless, for much higher values of n in the NCCM, this very 
rapid initial convergence slows markedly and shows signs of the oscillatory 
behaviour characteristic of asymptotic series [129-131]. Similar calculations (i.e., 
with n <30) have also been performed within the ECCM [103c], but the 
computational difficulties here are even more pronounced. It is probably fair to 
say that for neither the NCCM nor the ECCM are these numerical studies 
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conclusive. Nevertheless, they support the idea that both methods show rapid 
initial convergence (which in practice is all that is required for more realistic 
systems), followed by the series eventually becoming at best asymptotic. We note 
that similar calculations have also been performed for the much more technically 
demanding asymmetric (cubic-plus-quartic) anharmonic single-well and the sym- 
metric quartic double-well potentials [131]. 

Finally, we note that the Bargmann-space methods [103] have already 
provided us with considerable insight into the structure of the NCCM and 
ECCM parametrizations. Since they are the subject of a separate article in the 
present volume [103e], we give no detailed discussion here. We stress only that 
the holomorphic representation provides a complete algebraization of the other- 
wise abstract, topological linking and double-linking structures associated with 
the vertices of the emergent tree diagrams that arise in the NCCM and ECCM, 
respectively. Furthermore, it gives a definite mechanism to regularize the for- 
mally divergent series that appear in both CC representations when otherwise 
convergent, exact integral expressions are (incorrectly) expanded. 

6.4. Anharmonic spin models 

Many of the problems associated with the various divergent series that arise in 
the expressions for the cluster coefficients which characterize the NCCM and 
ECCM parametrizations of the above anharmonic oscillator, stem from the fact 
that its Hilbert space is infinite-dimensional. One might hope that another way 
of shedding light on these problems is to examine a finite-dimensional analogue 
from which it smoothly evolves in some appropriate limit. One way of doing this 
is to consider the (2j + 1)-dimensional spin space corresponding to a spin of 
quantum number j. In terms of the original SU(2) operators (J+, J~) which obey 
the usual spin commutation relations of Eq. (58), we define a set of new 
operators: 

J 0  -= Jz +J;  j +  = (2j)-l/zJ+. (71) 

It is then easy to check that for large values of j the commutation relations 
between the operators J + ,  j _ ,  and J o  are the same as those between the 
bosonic operators a*, a, and ata, respectively, except for terms of order 
O((ata)/j). Hence, in the limit that j--* 0% the anharmonic spin Hamiltonian, 
Hi, defined as: 

2 
//j = ½ + j  + j z  + 1__~ (j+ + j_)4, (72) 

should smoothly approach the anharmonic oscillator Hamiltonian of Eq. (68), in 
the well-defined sense that any energy eigenvalue E(fl ) with fixed value of n 
should converge to the corresponding anharmonic oscillator eigenvalue E,. 

The discrete spin-Hamiltonian of Eq. (72) may now be exactly diagonalized 
by ordinary matrix techniques for any finite value of j. In this way the exact 
values of the corresponding complete sets of NCCM and ECCM amplitudes 
{Sn, Sn } and {a,, ~n } respectively, where only even values of n ~< 2j enter, may be 
computed for any value of 2. Results have been given [!03c] fo r j  ~< 60. We note 
only that whereas the NCCM amplitudes {g, } converge only very slowly to their 
j --. oo limits, the convergence of the original ECCM amplitudes {s,, ~, } is much 
more rapid, which presumably indicates that this latter set of parameters 
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provides a rather stable set. Conversely, the ECCM amplitudes {an } which are 
canonically conjugate to the set {~, } do not easily stabilize, and indeed no 
reliable way of calculating them accurately for larger values of n for these 
anharmonic spin and oscillator systems currently exists to the best of our 
knowledge. The interested reader is referred to Ref. [103c] for further details. 

7. CC applications in quantum field theory 

We now turn our attention to the application of CC techniques to problems in 
quantum field theory. The group of Kiimmel and his coworkers at Bochum has 
been responsible for most of the developments in this area, and we consider two 
specific examples. 

7.1. ~4 f i e l d  theory 

The basic ideas described in Sect. 6 for the application of the CCM to 
anharmonic oscillators (and other one-body problems in quantum mechanics) 
considered as model field theories in (0 + 1) dimensions, may now quite readi ly  
be generalized to the corresponding bosonic field theories in (d + 1) dimensions. 
A prototype which has been much studied in the past by NCCM techniques is 
(1 + 1)-dimensional ~4 field theory [128, 132]. For this model there are two 
forms of the Hamiltonian density oeg, namely the so-called symmetric ( ~ s )  and 
broken-symmetry ( ~ b )  forms. Their analogues in the (0 + 1)-dimensional case 
are the single-well and double-well quartic oscillators. In both cases the theory is 
defined in a one-dimensional box of length L with Hamiltonian H given as: 

= _If L dx rig(x). (73) H 

The two respective Hamiltonian densities are given analytically as: 

1..  2,.~2 ~ s  = ~ /~m {1/-/2 + l (d~/dx)2 + ~m ~v + ¼~,~4), (74a) 

1 2 1 2 2 1 4 ~ b  = YM {½ H2 + ~(d~/dx) - zM ~ + Z2~ }, (74b) 

in terms of the field • = ~(x, t) and its conjugate momentum density 
11 = 11(x, t). These latter may be expanded, as usual, in terms of a complete set 
of bosonic modes with corresponding operators {ak, a~ } as: 

• (x, t) = ~ (2~okL) -'/2{ak(t)e'k~ + a ~ ( t ) e - i k x } .  
k 

(75a) 

11(x, t )  = - i ~. (oh 12L)l/2{ak(t)eikX - -  a ~ ( t ) e  - i k x } .  
k 

(75b) 

The normal-ordering operators Jff,, and JffM in Eqs. (74a,b) are defined with 
respect to the operators {ak, a~} with the corresponding frequencies 
co k = (k 2 + m2) 1/2 and co k = (k 2 + M2)~/2; respectively. We note that classically 
the symmetric ~ s  has an energy minimum at • = 0 and oscillator frequency 
e~ k = (k2+ m2) 1/2, whereas the broken-symmetry ~ b  is so-called because it has 
two classical energy minima at • = +M/(22)1/2, with an excitation spectrum 
co k = ( k2+ Mz) ~/2 in both. Once again, it is possible to make a Bogoliubov 
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transformation to a new complete set of canonical boson modes {b~, b~* } in 
complete analogy with Eq. (70) for the single-mode case. 

The (1 + 1)-dimensional ~4 Hamiltonians of Eqs. (73)-(74) are especially 
interesting in the light of several known exact results, namely: 

(i) The energy is a continuous function of the dimensionless coupling constant 
g (where gS _~ 2/m 2 and gb =_ 2/M2); 

(ii) There is exactly one phase transition, which must therefore be of second 
order. By Lorentz invariance the excitation energy is of the form e~ = (k 2 + rh 2) 1/2, 
and at the critical point gc the energy gap rh ~ 0. Hence, the two-point Green's 
function G(x, x') shows a changeover at the critical point from exponential 
long-range decay proportional to exp[-rh(x -x ' ) ] ,  to algebraic decay; 

(iii) For gS > g~ ~ 9.046 there are two Hamiltonian densities, ~¢gl and ~¢t°b 2, dual 
to a given Jg~, in the sense that all three are equivalent up to additive constants 
which scale like L. For gS = g~, ~ ,  ___ ~ 2  with a value gb = 2rt/3, and for gS < g~ 
there is no Jgb equivalent to a given ~ ;  

(iv) The so-called topological charge Q, defined as: 

O = (½gb)1/2 ~0 L dx(d~/dx), (76) 

commutes with H, and has the eigenvalues 0, _+ 1. These correspond respectively 
to the so-called "vacuum sector" and the "soliton (kink and antikink) sectors". 
The latter occur only for g~> g~. 

For details of the CCM results, the reader is guided to the literature 
[128, 132]. We note only that in both the vacuum and soliton sectors most exact 
features of the model can be reproduced, with the exception of the actual critical 
point. By contrast, this is not the case in the Gaussian (or, roughly speaking, 
Hartree) approximation. In practice, what occurs in the CCM calculations for 
the vacuum sector, for example, is that ~ b  can be studied for all values of gb. 
On the other hand, for Jg~ there is a region gS < g~ for which the vacuum field 
expectation value ( ~ )  = 0; a region g~> g~_ for which ( ~ )  ~ 0; and a region in 
between, g~_ < gS < g%, for which no CCM solution can be found. The width of 
this region depends on the choice of model state and on the particular approxi- 
mation scheme used. The region is presumed to contain the actual critical point, 
go, for lower values of which the symmetric model possesses a unique physical 
vacuum state, and for higher values of which its vacuum state is spontaneously 
broken dynamically (by "radiative corrections"). 

7.2. A model fieM theory of pions and nucleons 

Another very interesting problem from the standpoint of quantum chemistry is 
the standard (3 + 1)-dimensional model of pions and nucleons interacting via the 
isospin-invariant pseudoscalar coupling. It has a Hamiltonian density given as: 

~ o  = ~ o ( f )  = ½[n~n, + V ~ "  ~ ,  + m 2 ~ ]  + %( - i~" V + M W , , ,  (77) 

~ . t ( ~ )  = - ig i. d~x'F(f - ~') % (f)V~ ~, % (~)~  (~'), 
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where ~t = ~,(x) and H~ =H,(£)  are respectively the pion (bosonic) field 
operator and its conjugate momentum density operator, as in Eq. (74a), and 
where ~',,(~) and 'Pt,(Y) are the four-component Dirac nucleon (fermionic) field 
operator and its adjoint respectively. The matrices 7 and 75 are the usual (4 x 4) 
Dirac matrices; the three matrices z, are the usual (2 x 2) Pauli isospin matrices; 
and the summation convention is implied over the repeated isospin indices t' for 
the (isospin-½) nucleon and t for the (isospin-1) pion. The form-factor F(~) is 
necessary to renormalize the pion-nucleon vertex. It is taken to have the 
standard form whose Fourier transform in momentum space is given as: 

2 2 __ m 2 

F(t~) 22 + q2, (78) 

where 2 is a high-momentum (or small-distance) cutoff parameter. Finally, the 
mass parameters m and M are the bare pion and nucleon masses in the theory. 

A CCM calculation for this system has been carried out [133] in the 
multireference ("open-shell") formulation described earlier. In the first place, the 
physical vacuum I~ > is written in terms of the bare vacuum 14 > exactly as in 
Eq. (10), in terms of a correlation operator S which is now expanded as a double 
sum: 

S =  ~ S,,,, (79) 
m , n  = 1 

in terms of the number m of pions and the number n of nucleon-antinucleon 
pairs. Secondly, the (physical) one-nucleon state is treated exactly as in the 
one-valence parametrization of Eq. (19); and, thirdly, the two-nucleon state is 
treated as in the two-valence parametrization of Eq. (23). The operators F (1) and 
F (2) are also decomposed as in Eq. (79). 

Hasberg and K/immel [133] have performed such a multireference CCM 
calculation in which they kept the partitions So~, Sn, F~o ) (and F(2~o ), F~o~ ), and F~I ~ 
in low order). Clearly, the results depend on the parameters M, g, and 2. In 
principle they also depend on the bare pion mass m, but the pion self-energy is 
actually a higher-order effect than the above approximations used, and hence m 
is set to the physical (experimental) pion mass. The one-nucleon calculation was 
then used to fit the bare mass M from the CC prediction for the physical 
(experimental) nucleon mass. Hence, the two remaining parameters 2 and g 
could be used to examine the two-nucleon (deuteron) binding energy. The 
interested reader is referred to Ref. [133] for further details. We note only that 
the dependence on 2 was, very satisfyingly, found to be weak, and that with 
values of the pion-nucleon coupling constant g2 close to the physical ("experi- 
mental") value, very good agreement could be found with the experimental 
deuteron binding energy. The convergence obtained in these pioneering calcula- 
tions is most impressive, and it indicates yet again that CC techniques which are 
by now quite standard in quantum chemistry can find very valuable applications 
in very diverse areas of physics. 

8. CC applications to quantum spin chain and lattice models 

Quantum spin lattice models are interesting for a number of reasons. From the 
theoretical viewpoint, they are among the most quantum-mechanical of all 
known systems, in the sense that many of their properties differ profoundly from 
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those of their classical counterparts, in a way which is often very counter- 
intuitive. In particular, they display a fascinating range of phase transitions and 
associated changes of order and symmetry. Their behaviour can also be studied 
for various values of the spin quantum number, the coupling constants in the 
Hamiltonian, and the dimensionality and underlying symmetry properties of the 
lattice on which they are defined. Simple changes in each of these parameters can 
lead to profound changes in the nature of the system. Finally, the various 
quantum spin lattice models also exhibit a diverse mix of exactly integrable and 
nonintegrable systems. 

Experimentally, spin lattice systems are also of great interest, not only for 
such obvious examples as solid 3He, but also for the various magnetic systems 
displaying ferromagnetism and antiferromagnetism. In this latter regard there 
exist several quasi-one-dimensional and quasi-two-dimensional systems whose 
distinctive properties are believed to arise from their strongly anisotropic bond- 
ing. In a typical quasi-one-dimensional antiferromagnet, for example, the mate- 
rial may form chains due to a strong superexchange coupling between its 
constituent magnetic ions (e.g., Ni2÷). Such materials exist for which the ratio of 
interchain to intrachain couplings is less than 0.1%. Similarly, many important 
quasi-two-dimensional layered compounds exist. A particularly topical example 
is provided by the ceramic copper oxide materials displaying high-temperature 
superconductivity. Indeed, the two-dimensional (2-d) spin-½ system defined on a 
square lattice, with nearest-neighbour antiferromagnetic Heisenberg interactions 
between the spins, has been hypothesized [ 134] as a model of relevance for the 
observed superconductivity, where the belief is that this interaction models that 
between the electrons in the singly-occuped dx2_y2 orbitals on the copper atoms. 

Thus, for both strong theoretical and experimental reasons, it is of consider- 
able interest to bring our universal tools of quantum many-body theory to bear 
upon spin-lattice systems. To date, we are aware of only two such attempts to 
utilize CCM techniques [135, 136]. In the first of these, Roger and Hetherington 
[135] used only the ground-state CCM, and hence restricted themselves to 
ground-state energies. They were primarily interested in the solid phases of 3He, 
which have proven to be very difficult cases to study theoretically at the 
microscopic level. By using CC techniques they have calculated the transition 
field between the two ordered phases of body-centred cubic (bcc) 3He, and they 
have predicted its variation with some respect to molar volume. Furthermore, 
they have also predicted some interesting properties of the magnetization of a 
2-d square lattice of 3He adsorbed onto some appropriate substrate. 

The present author and his coworkers [136] have been more interested in 
such models as the XXZ-model (or anisotropic Heisenberg) Hamiltonian. The 
spin-½ one-dimensional (I-d) chain version of this model, whose Hamiltonian is 
given in Eq. (66), is exactly soluble by Bethe-ansatz techniques [124], and hence 
provides a useful benchmark. It displays an interesting phase transition at A --- 1 
between an Ising-like antiferromagnetically ordered phase at A > 1 to a "critical" 
antiferromagnetic phase for I AI < 1. The A > 1 phase exhibits both a gap in its 
excitation spectrum and a characteristic exponential decay in the spin-spin 
correlation function to a nonzero value (namely, the order parameter), at large 
separations of the two spins. By contrast, the critical phase in the region I A [ < 1 
has a gapless excitation spectrum, and a spin-spin correlation function that 
decays algebraically to zero at large separations. 

By starting with a perfectly ordered, alternating Nrel state on the l-d chain 
as our model state 1~ ), we have demonstrated not only that the NCCM can give 
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good results for the ground-state and excitation energies, but also that it gives a 
qualitatively correct description of the entire Ising-like phase as a function of the 
anisotropy parameter A, right down to a predicted critical point Ac (which itself 
depends on the particular approximation). Furthermore, together with the 
standard SUB(n) scheme, several other completely new truncation schemes have 
been invented and investigated in this work. We believe that these may poten- 
tially be of interest in other fields also, including quantum chemistry. This topic 
is considered in detail in another article in the present volume [ 136], to which the 
interested reader is therefore referred. We note only that similar techniques are 
now also being applied to the analogous spin-½ XXZ model on a 2-d square 
lattice, which is nonintegrable and of interest in high-temperature superconduc- 
tivity. Similar extensions are also in progress for comparable (nonintegrable) 
spin-1 models. Of special interest here is the microscopic investigation of the very 
interesting so-called Haldene phase [ 137], which has been conjectured to exist for 
the 1-d spin-1 chain and which has no counterpart in the integrable spin-½ chain. 

9. Other formal applications of the ECCM 

Finally, we turn our attention to two specific applications of the ECCM which 
have shown how the basic formalism may fairly easily be integrated with rather 
important gauge-fieM techniques. The two very different, specific problems con- 
cerned are: (i) the (zero-temperature) quantum fluid dynamics of a strongly- 
interacting condensed Bose fluid [100]; and (ii) a charged impurity in a polariz- 
able medium [101]. In the former case the gauge fields are external, and 
correspond to the scalar and vector potentials (arising from the U(1) symmetry 
of number conservation, and hence exactly as met in electromagnetism) which 
serve to set the system into its most general state of motion. In the case of the 
charged impurity, the gauge fields are internal and correspond to the polarization 
degrees of freedom. 

To date, the extensions to deal with both problems have been formulated at 
a rather general level. Although the theoretical formalism is complete in both 
cases, practical implementations have not yet been made. Nevertheless, we note 
that we regard these two successful marriages of gauge-field ideas with CC 
methodology as being potentially very important. Thus, for example, nearly all 
relativistic field theories of interest in particle physics are (usually non-Abelian) 
gauge field theories. Quantum chromodynamics (QCD) is an obvious example. 
The above two examples from the nonrelativistic domain thus lend credence to 
the hope that CC (and particularly ECCM) techniques might be useful in 
studying such field theories and such particular aspects as the problem of quark 
confinement. 

9.1. Quantum fluid dynamics of a condensed Bose fluid 

As we have seen in Sect. 3, the ECCM at its most general provides the equations 
of motion for a complete set of linked-cluster amplitudes which fully characterize 
the system at hand. It formally decomposes an arbitrary quantum many-body 
problem based on a Schr6dinger dynamics into a nonlocal classical field theory 
for a set of interacting, n-body, c-number fields or amplitudes {a n, 6n }. In 
coordinate space these are simply n-point functions of spatial arguments 
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(2~1 . . . . .  )~n) and time t. For the condensed Bose fluid case in which the model 
state I~ )  is now chosen to be the bare vacuum state, it is easy to check that the 
lowest-order (one-body) amplitudes are precisely the usual condensate wavefunc- 
tions, namely the (time-dependent) expectation values of the one-boson creation 
and destruction operators (or field operators), a*(£) and a(2) respectively, for a 
particle at space-point )~: 

ffl(x; t) = (a t (2 ) )  = (~P(t)]at(~)l~(t)); a1(2; t) = (a(:~)). (80) 

However, the higher-order ECCM amplitudes may also be regarded as general- 
ized quasilocal order parameters. For example: 

t72(2 , 33; t) = (a*(~)a*(p)) . . . .  =- (a*(2)a*(fi)) - (at(~))(a*(p)) .  (81) 

In order to set the system into arbitrary motion, we introduce two external 
gauge fields tk(~, t) and A(2, t)which couple respectively to the density operator 
Q(f) and the current operator j(f):  

0(~) = 0(~, ~); 0(~, f') = a~(~)a(~'), 

• i ( 8 2 )  
= - r )  

For a system of identical bosons of mass m each, we are thus led to consider the 
grand-canonical Hamiltonian H: 

H° =~mml ~j d~ [Va'(~)]~ • [Va(f)] +~l~dr~df 'V(r-f ' )a*(r)a*(K)a(f ' )a(f)oo 

- # . fdf  at(f)a(f), (83) 

where p is the chemical potential, introduced since our ECCM states based on 
the vacuum I ¢ )  do not conserve particle number . 

Under the effect of a local gauge transformation: 

(a ~(a '=d)  +OA/3t; A ~ A ' = . 4 - V A ,  (84) 

with arbitrary phase field A -- A(f, t), the ECCM fields are easily seen to acquire 
a simple phase factor: 

a , ( 2 ~ . . . ~ , ; t )  ~ r , ( x ~ . . . 2 , ; t ) = e x p  - i  A(fk, t) a , (21 . . .2n; t ) ,  
k = l  

tTn(Xl . . .Yn; t  ) exp +i A(fk, t ) 6, (21 . . .2~ , t ) .  (85) 
k = l  

The ECCM equations of motion for the fields {tr,, ft, }, with the grand-canonical 
Hamiltonian of Eq. (83), may now be derived. For example, their ensuing 
SUB(l) approximation in which only {G~, t~l} are retained, is precisely the 
(time-dependent mean-field or Hartree or) Gross-Pitaevskii approximation 
[138], which yields the well-known kink-soliton solution in one-dimensional 
geometry and the comparable vortex solution in cylindrical geometry. 
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Similarly, we may examine the equation of motion of the one-body density 
matrix: 

0(f, f'; t) --- (~(t)[O(~, f')l ~(t)). (86) 

By making use of the ECCM parametrizations for ]~u(0 ) and (~(t)] from Sect. 
3, it is easy to derive the relation: 

0(f, f'; 0 = ( 4  [Za*(0a(f')Z[ • > 

f (87) 

We note that since each of the ECCM amplitudes obeys the cluster property, the 
one-body density matrix exhibits the off-diagonal long-range order: 

d(~, ~'; t) , ~1(~; t)a~(f'; O, (88) 

typical of a superfluid. We also see that it has the simple gauge-transformation 
property: 

~(~, F'; t) -o 0'(~, ?'; 0 = ei[A(Lt)-a(e"t)]~(  ~, re', t). (89) 

The local balance equations of hydrodynamics are now derived by trans- 
forming to relative and centre-of-mass coordinates: 

( = F - ~'; /~ = 1(~ + 7), (90) 

by expanding the equation of motion for 0(L ~'; t) = 0(/~: (; t) in powers of 4, 
and by identifying at each order the pertinent gauge-invariant tensor by making 
use of Eqs. (84) and (89). Clearly, the zeroth-order equation is simply the 
number-density balance equation for 0(?, t) itself. Similarly, the first- and second- 
order equations in ~ give respectively the balance equations for the (gauge-in- 
variant) true current density J(i, t) and the second-order kinetic stress tensor 
Kab(~, t). In this way we build a hierarchy of exact local balance equations (for 
number conservation, momentum conservation, energy conservation, etc.). These 
are precisely the quantum-mechanical macroscopic laws of hydrodynamics for 
the system. 

Furthermore, each of the macroscopic tensors involved (e.g., 0, J, Kab) may 
be related back to its microscopic content in terms of the ECCM amplitudes 
{~rn, ~n }, as in Eq. (87). We further find, very importantly, that the hydrodynam- 
ical balance equations are also valid in such practical implementations as the 
SUB(n) and other approximation schemes. Since all amplitudes {a,, ~, } obey the 
cluster property, the formalism is capable of properly handling all states of 
topological excitation or deformation, such as the vortex lines observed in liquid 
4He. 

For further specific details, the interested reader is referred to the literature 
[100]. 

9.2. Charged impurity in a polarizable medium 

The technique of allowing low-energy positrons to annihilate inside metals, 
alloys, and other forms of condensed matter, has become an important experi- 
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mental tool. Clearly, an ab initio microscopic description of such a system 
comprising a positron embedded in an electron medium (or, more generally, a 
charged impurity particle inside a polarizable medium), should provide the most 
reliable interpretation of the experimental data. This system is dearly a proto- 
type of the field-theoretical one-body problem (cf., the one-nucleon problem in 
the pion-nucleon field theory model of Sect. 7.2), and it is of particular interest 
to investigate it within the ECCM. 

An obvious starting point is the ECCM description of the ket and bra states 
of the single impurity inside the electron system: 

i,e, > = f d3r b't(~)Z(~, t)eS(~,Oe-~(:,o[ q~ ), 

< I = f a3r I ez(e'°e-s(e'°~(?, t)b(~). 
(91) 

Here, the model state [~)  is an independent-particle (Slater determinant) model 
state for the electron system; b(0 and b*(0 are the destruction and creation 
operators (fields) for a positron at position ?; and the ECCM operators S(?, t) and 
Z(?, t) act in the electron Hilbert space to correlate the electrons among themselves 
as well as to describe the local enhancement of electrons around the positron. 
Thus, in the limit r ---, 0% S and Z become the usual ECCM operators for the pure 
interacting electron gas. The functions Z and ~ play the role of positron (ket and 
bra) wavefunctions, since the positron density may be written as: 

Qp(~, t) = ( ~ ,  [b*(0b(0l ~,  > = Y(~, 0Z(~, t). (92) 

In coordinate-space representation, the ket wavefunction of Eq. (91), for exam- 
ple, becomes: 

</~; X l ' ' "  XN > = x(~, t)~P:(yc,... XN), (93) 

where ~ is the positron coordinate and {xl; i = 1, 2 . . . .  , N} are the electron 
coordinates. It is very important to realize that the N-electron wavefunction 
7~:(Xl • .. ~N) depends crucially on the positron coordinate ~, due to the strong 
screening correlations and the enhancement of electron density around the 
positron. In the independent-particle model (where S, Z ~ 0), this ?-dependence 
is ignored, and the corresponding Slater determinant wavefunction typically 
underestimates the positron annihilation rate in metals, for example, by factors 
of the order of ten or more. 

The ECCM now proceeds by applying a variational principle to the action 
functional: 

d = f dt f d3r(~l l( i~/Ot -- H ) [ ~ l ) .  (94) 

It is shown in Ref. [101] that the ensuring discussion can be conveniently 
formulated in terms of an internal gaugef ie ld  operator {At(f , t); p = 0, 1, 2, 3}: 

s - z  A t = i e Z e - S _ _ e  e , (95) 
0x~ 

where Xo = it, Xl = x, x2 = y, x3 = z, which now describes the polarization of the 
electronic medium. In the usual fashion, the derivative operators (~2 and O/Ot) in 
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the Schr6dinger equation may thereby be easily replaced by their covariant 
equivalents: 

a a 
ax, ~Du = ax, iA~, (96) 

exactly as in electromagnetism, and also as in the previous example of Sect. 9.1. 
In this way, we can now derive equations of motion for the electronic ECCM 
coordinates {Sn, fin} (or equivalently, {a n, 6n}), as well as for the positron 
wavefunctions Z and ~. 

Just as in the previous example, we can also derive, for example, a continuity 
equation for the positron density, Qp. One finds that from the viewpoint of the 
medium, the positron only enters into its microscopic equations of motion (for 
the amplitudes {an, #n}) through the hydrodynamical positron density and 
current variables that describe its classical average flow. For further details the 
interested reader is referred to Ref. [101]. We note only that the general ECCM 
formalism provides an exact description of the positron motion in the polarizable 
medium. All of the usual conservation laws are satisfied, just as in Sect. 9.1. It 
may now be approximated by the usual SUB(n) scheme, for example. 

10. Concluding remarks 

One of our main aims in this survey has been to demonstrate the diversity, 
vitality, power, and accuracy of CC techniques, in the hope that some of the 
applications and some of the more formal developments that have been made in 
physics, might also prove useful within quantum chemistry. Such cross-fertiliza- 
tion is always beneficial. It may also be particularly useful now, when, for 
example, the systems of interest in ab initio quantum chemistry are becoming 
increasingly complex, and when extremely accurate wavefunctions are required 
for the currently proposed atomic physics tests for the violation of fundamental 
symmetries. 

Of particular immediate interest with regard to the above comments, we 
mention only the potentially very powerful ECCM techniques on the one hand, 
and the very recent advent of several new approximation schemes for the 
otherwise exact CC equations on the other. We believe that it is worthwhile to 
explore both of these avenues further. In the first place, the ECCM is now rather 
well developed and understood at the formal level. In principle, as we have tried 
to convey, it has many advantages over both the CI method and the NCCM, 
particularly with regard to the more global aspects of a many-body system. For 
molecules, these include, for example, their overall topological structure and the 
similar global properties of their energy surfaces. Molecules which exhibit a 
"shape transition" between widely differing configurations when some internal 
(geometrical) parameter is varied beyond some critical value close to its equi- 
librium value, might therefore be prime initial candidates for study by the 
ECCM. 

Although the generation of the actual ECCM equations is not difficult, we 
appreciate that their efficient computer-coding for practical implementations is 
no trivial task. Nevertheless, we believe that the possible rewards merit the effort. 
We even hazard the guess that within five to ten years the use of the ECCM in 
quantum chemistry will be accepted as a standard tool. Of course, for this 
prediction to be realized, the efficacy of sufficiently simple and robust truncation 
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schemes will need to be demonstrated. Our optimism is based on the very wide 
corpus of successful applications that have already been made, and which have 
been reviewed here. 

Secondly, we turn to the possible use of new truncation schemes other than 
the standard SUB(n) or HCSUB(n) schemes and their variants. We have already 
alluded to examples of these that have arisen in different contexts. One is based 
on the idea of trying to mimic within the CCM some of the successes of 
variational methods employing trial wavefunctions of the Jastrow type, for 
example. Thus, in the exact CCM equation for the matrix elements of the 
two-body partition $2, say, of the cluster correlation operator, instead of setting 
the matrix elements of the higher-order partitions $3 and $4 to zero, as in the 
standard SUB(n) approximation, attempts have been made to approximate them 
in terms of $2 itself. One way of doing this, loosely speaking, is to allocate them 
the values they would have if the exact many-body wavefunction were precisely 
of Jastrow type. This approach can also be systematically improved upon by 
enlarging the Jastrow trial wavefunctions to the more general Jastrow-Feenberg 
type of Eq. (4). 

A second source of entirely new approximation schemes has been the 
application of the NCCM to spin-lattice problems. In this context, new approx- 
imations have been developed which concentrate on retaining configurations by 
criteria different from that used in the standard SUB(n) scheme, which focusses 
essentially on the maximum number of correlated "particles" (e.g., electron-hole 
pairs) defined with respect to the model state. One alternative scheme focussed 
instead on the number of "elementary excitations" (namely kinks in the quan- 
tum spin-lattice models considered). With an eye on the localized nature of the 
interaction and/or the excitations, another scheme focusses on the physical size 
or extent (in real space) of the "locale" over which the particles are correlated in 
the retained configurations. Both of these new physically motivated schemes may 
be precisely formulated in terms of systematic hierarchies, like that of the SUB(n) 
scheme. Preliminary investigations on discrete lattice models have been suffi- 
ciently encouraging to indicate that similarly motivated schemes might also be 
useful in quantum chemistry. 

We conclude with some remarks on possible future developments and 
applications of CC techniques. For example, for extended systems, an impor- 
tant general area concerns inhomogeneous systems, for which we expect that 
the ECCM in particular should prove valuable. Indeed, the problem of a single 
charged impurity inside a polarizable medium discussed in Sect. 9.2 is a proto- 
type here. Other important examples include surface phenomena and localiza- 
tion problems. In a sense, these problems are intermediate between such 
infinite, homogeneous many-body systems as the electron gas on the one hand, 
and such finite systems as atoms and molecules on the other. Since CC 
techniques have been successful in both limits, there are grounds to believe that 
they will continue to be so in this intermediate regime. In a similar vein, we 
also expect to see an increasing effort given to the use of CC techniques for the 
rigorous microscopic investigation of other many-body problems or field theo- 
ries of current interest. These include such topical models of strongly-interact- 
ing electronic systems as the Hubbard model and its variants, and also such 
quantum field theories of fundamental interest as QCD, in both continuum and 
lattice-discretized versions. 

We may also speculate on the use of CC techniques in quantum optics. A 
particular fundamental issue in this field concerns possible generalizations of 
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the well-known Glauber coherent states of light of a single mode, associated with 
a bosonic creation operator a t. The (number-nonconserving) Glauber coherent 
states [z> are defined in terms of a unitary (and hence norm-preserving) 
operator, U1 = Ul(Z) = exp(za t - z ' a ) ,  the displacement operator, acting on the 
vacuum state, [0>. Similarly, the two-photon or "squeezed" coherent states, of 
much topical interest, are obtained via a unitary operator [72, the squeezing 
operator, which is the exponential of an anti-Hermitian operator bilinear in the 
operators a and at, and which acts either on 10> or on [z>. I t  is not difficult to 
show that the Glauber coherent states and the squeezed coherent states are, in 
the CCM language, just those states attainable from the cyclic vector [0> within 
the SUB(I) and SUB(2) subspaces respectively. 

The problem with a naive generalization to "hypersqueezed" or n-photon 
coherent states with n > 2, is that such SUB(n) states with n > 2 are readily 
seen to have infinite norms. Hence, they are not realizable by simple finite 
unitary operators U~, given as exponentials of anti-Hermitian operators which 
are themselves nth-order multinomials in a and a t. By contrast, within both the 
NCCM and ECCM we may define states 1~,~ and <lPn[ within the corre- 
sponding SUB(n) approximations, such that <~, [~'n > = 1. AS we have seen, 
the price paid is that ('Pn[ is no t  then the Hermitian adjoint of [~v ). Whether 
such SUB(n) hypersqueezed states will be of practical use in quantum optics, or 
whether they are in any sense physically realizable, remains to be seen. It does, 
however, seem to us that the theoretical mechanisms that have otherwise been 
proposed up till now to generate hypersqueezed states, are both much more 
convoluted and much less natural than the SUB(n) states of either the NCCM 
or ECCM. 

Turning to other needed developments of the CCM itself, we have already 
noted several instances of many-body systems with a degeneracy or near-degen- 
eracy arising at a global rather than a local level. This typically arises where there 
are two or more degenerate configurations of the system, separated by a large 
potential barrier. The double-well quartic oscillator is an example. A similar 
molecular example is given by the double-degenerate, mirror-image, non-planar 
configurations of the ammonia (NH3) molecule, the quantum tunneling between 
which leads to the closely-spaced states utilized in the ammonia maser. Corre- 
sponding periodic (infinite multi-well) generalizations lead to the band structure 
of energy levels in crystalline solids. The existing multireference versions of the 
CCM have grown from applications to finite open-shell systems, and are 
therefore much more attuned to the local degeneracy of a group of valence 
orbitals, for example. Their extension to situations of global degeneracy, typi- 
cally associated with a breakdown of symmetry, is far from trivial. Nevertheless, 
its potential uses are varied and manifold. 

Finally, we reiterate our belief that future advances in quantum many-body 
theory are likely to arise from bringing into conjunction the best elements of 
existing methods. We have already noted several examples of past and present 
activity in this area. We expect that quantum chemistry will play a full role in 
this regard, both in providing interesting arenas in which the confrontations and 
unions between methods can take place, and in suggesting new ingredients for 
incorporation into the CCM which have proven successful in other molecular 
applications. 
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